Chin. Phys. Lett.  2011, Vol. 28 Issue (2): 020501    DOI: 10.1088/0256-307X/28/2/020501
GENERAL |
Diffusion of Active Particles Subject both to Additive and Multiplicative Noises
WANG Shao-Hua, YANG Ming**, WU Da-Jin
School of Physics, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
WANG Shao-Hua, YANG Ming, WU Da-Jin 2011 Chin. Phys. Lett. 28 020501
Download: PDF(517KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We consider a Langevin equation of active Brownian motion which contains a multiplicative as well as an additive noise term. We study the dependences of the effective diffusion coefficient Deff on both the additive and multiplicative noises. It is found that for fixed small additive noise intensity Deff varies non−monotonously with multiplicative noise intensity, with a minimum at a moderate value of multiplicative noise, and Deff increases monotonously, however, with the multiplicative noise intensity for relatively strong additive noise; for fixed multiplicative noise intensity Deff decreases with growing additive noise intensity until it approaches a constant. An explanation is also given of the different behavior of Deff as additive and multiplicative noises approach infinity, respectively.
Keywords: 05.40.-a      05.45.-a     
Received: 26 August 2010      Published: 30 January 2011
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/2/020501       OR      https://cpl.iphy.ac.cn/Y2011/V28/I2/020501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Shao-Hua
YANG Ming
WU Da-Jin
[1] Schweitzer F 2002 Brownian Agents and Active Particles (New York: Springer)
[2] Schweitzer F, Ebeling W and Tilch B 1998 Phys. Rev. Lett. 80 5044
[3] Erdmann U et al 2000 Eur. Phys. J. B 15 105
[4] Schweitzer F, Tilch B and Ebeling W 2000 Eur. Phys. J. B 14 157
[5] Mikhailov A S and Zanette D H 1999 Phys. Rev. E 60 4571
[6] Badoual M et al 2002 Proc. Natl. Acad. Sci. U. S. A. 99 6696
[7] Lindner B and Nicola E M 2008 Phys. Rev. Lett. 101 190603
[8] Jülicher F and Prost J 1995 Phys. Rev. Lett. 75 2618
[9] Erdmann U, Ebeling W and Anishchenko V S 2002 Phys. Rev. E 65 061106
[10] Schweitzer F, Ebeling W and Tilch B 2001 Phys. Rev. E 64 021110
[11] Chetverikov A P, Ebeling W and Velarde M G 2005 Eur. Phys. J. B 44 509
[12] Fiasconaro A, Ebeling W and Gudowska-Nowak E 2008 Eur. Phys. J. B 65 403
[13] Glück A, Hüffel H and Ilijić S 2009 Phys. Rev. E 79 021120
[14] Lindner B 2007 New J. Phys. 9 136
[15] Wu D J, Cao L and Ke S Z 1994 Phys. Rev. E 50 2496
[16] Reimann P 2002 Phys. Rep. 361 57
[17] Klimontovich Yu L 1990 Physica A 163 515
[18] Klimontovich Yu L 1994 Phys. Usp. 37 737
[19] Klimontovich Yu L 1995 Statistical Theory of Open Systems (Dordrecht: Kluwer)
[20] Ito K 1951 Mem. Am. Math. Soc. 4 51
[21] Stratonovich R L 1966 SLAM J. Control 4 362
[22] Mikhailov A S and Zanette D H 1999 Phys. Rev. E 60 4571
[23] Lindner B and Nicola E M 2008 Eur. Phys. J. Special Topics 157 43
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 020501
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 020501
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 020501
[4] BAI Zhan-Wu. Role of the Bath Spectrum in the Specific Heat Anomalies of a Damped Oscillator[J]. Chin. Phys. Lett., 2012, 29(6): 020501
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 020501
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 020501
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 020501
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 020501
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 020501
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 020501
[11] SHU Chang-Zheng,NIE Lin-Ru**,ZHOU Zhong-Rao. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise[J]. Chin. Phys. Lett., 2012, 29(5): 020501
[12] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 020501
[13] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 020501
[14] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 020501
[15] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 020501
Viewed
Full text


Abstract