Chin. Phys. Lett.  2011, Vol. 28 Issue (2): 020502    DOI: 10.1088/0256-307X/28/2/020502
GENERAL |
A Denoising Algorithm for Noisy Chaotic Signals Based on the Higher Order Threshold Function in Wavelet-Packet
DENG Ke, ZHANG Lu, LUO Mao-Kang**
Institute of Mathematics, Sichuan University, Chengdu 610065
Cite this article:   
DENG Ke, ZHANG Lu, LUO Mao-Kang 2011 Chin. Phys. Lett. 28 020502
Download: PDF(930KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Aiming at the shortage of conventional threshold function in wavelet noise reduction of chaotic signals, we propose a wavelet-packet noise reduction method of chaotic signals based on a new higher order threshold function. The method retains the useful high-frequency information, and the threshold function is continuous and derivable, therefore it is more consistent with the characteristics of the continuous signal. Contrast simulation experiment shows that the effect of noise reduction and the precision of noise reduction of chaotic signals both are improved.
Keywords: 05.45.-a      84.40.Ua     
Received: 01 January 1900      Published: 30 January 2011
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  84.40.Ua (Telecommunications: signal transmission and processing; communication satellites)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/2/020502       OR      https://cpl.iphy.ac.cn/Y2011/V28/I2/020502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DENG Ke
ZHANG Lu
LUO Mao-Kang
[1] Lee T H and Park J H 2009 Chin. Phys. Lett. 26 090507
[2] Xu Q and Tian Q 2010 Chin. Phys. Lett. 27 020505
[3] Willeboordse F H et al 1994 Phys. Rev. Lett. 73 533
[4] Guo R W et al 2009 Chin. Phys. Lett. 26 090506
[5] Hu G, Xie F and Qu Z 1997 Phys. Rev. E 56 2738
[6] Deng K et al 2010 Chin. Phys. B 19 030506
[7] Kotoulas D et al 2006 IEEE Trans. Signal Process 54 1351
[8] Xie Z B and Feng J C 2009 Chin. Phys. Lett. 26 030501
[9] Choon Ki Ahn 2010 Chin. Phys. Lett. 27 010503
[10] Hu G et al 2006 Visual Computing 22 147
[11] Stéphane G M 1999 A Wavelet Tour of Signal Processing 2nd edn (San Diego: Academic) p 446
[12] Donoho D and Johnstone I 1994 Biometrika 81 425
[13] Ingrid Daubechies 1998 Ten Lectures on Wavelet (New York: Cambridge University) p 129
[14] Pan Q, Zhang L and Dai G Z 1999 IEEE Trans. Signal Process. 47 3401
[15] Zhang X P and Desai M D 2001 IEEE Trans. Neural Networks 12 567
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 020502
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 020502
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 020502
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 020502
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 020502
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 020502
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 020502
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 020502
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 020502
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 020502
[11] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 020502
[12] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 020502
[13] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 020502
[14] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 020502
[15] WANG Can-Jun** . Vibrational Resonance in an Overdamped System with a Sextic Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 020502
Viewed
Full text


Abstract