Chin. Phys. Lett.  2011, Vol. 28 Issue (11): 114302    DOI: 10.1088/0256-307X/28/11/114302
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Data-Derived Estimation of Source Depth Using Vertical Line Array Data in Shallow Water
WANG Hao-Zhong, WANG Ning, GAO Da-Zhi
College of Information Science and Engineering, Ocean University of China, Qingdao 266100
Cite this article:   
WANG Hao-Zhong, WANG Ning, GAO Da-Zhi 2011 Chin. Phys. Lett. 28 114302
Download: PDF(593KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Following the closure relation of normal mode theory, the source depth can be estimated approximately provided that the eigenfunction and the excited amplitude with correct polarity of each effective mode are given. Both the eigenfunction and the excited amplitude of each effective mode can be extracted using the data-derived method, which does not require a priori knowledge about ocean environment and source range but the sound pressure data observed by vertical line array. The polarities, undetermined by data-derived method, can be estimated using a cost function. Then, the source depth is determined by locating the peak of the object function defined by the closure relation with the correct polarities. Numerical simulation and experiment are carried out to illustrate the performance of this method.
Keywords: 43.30.Bp      43.30.Wi      43.60.Gk     
Received: 15 March 2011      Published: 30 October 2011
PACS:  43.30.Bp (Normal mode propagation of sound in water)  
  43.30.Wi (Passive sonar systems and algorithms, matched field processing in underwater acoustics)  
  43.60.Gk (Space-time signal processing, other than matched field processing)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/11/114302       OR      https://cpl.iphy.ac.cn/Y2011/V28/I11/114302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Hao-Zhong
WANG Ning
GAO Da-Zhi
[1] Bucker H P 1976 J. Acoust. Soc. Am. 59 368
[2] Tolstoy A 1993 Matched Field Processing for Underwater Acoustics (Singapore: World Scientific)
[3] Yang T C 1987 J. Acoust. Soc. Am. 82 1736
[4] Yang T C and Yates T 1998 J. Acoust. Soc. Am. 104 1316
[5] Peng Z H et al 2010 Chin. Phys. Lett. 27 094303
[6] Shang E C 1985 J. Acoust. Soc. Am. 77 1413
[7] Bogart C W and Yang T C 1992 J. Acoust. Soc. Am. 92 2051
[8] Nicolas B et al 2006 EURASIP J. Appl. Signal Process. 2006 1
[9] Tappert F D et al 1985 J. Acoust. Soc. Am. Suppl. 78 S30
[10] Kuperman W A et al 1998 J. Acoust. Soc. Am. 103 25
[11] Zhao Z D et al 2010 Chin. Phys. Lett. 27 064301
[12] Hursky P et al 1995 J. Acoust. Soc. Am. 98 2971
[13] Neilsen T B and Westwood E K 1997 J. Acoust. Soc. Am. 101 3025
[14] Neilsen T B and Westwood E K 2002 J. Acoust. Soc. Am. 111 748
[15] Hursky P, Hodgkiss W S and Kuperman W A 2001 J. Acoust. Soc. Am. 109 1355
[16] Porter M B 1991 The KRAKEN Normal Mode Program (Italy: SACLANTCEN) Report SM-245
Related articles from Frontiers Journals
[1] CHEN Ze-Wei, YU Guang-Zheng, XIE Bo-Sun, GUAN Shan-Qun. Calculation and Analysis of Near-Field Head-Related Transfer Functions from a Simplified Head-Neck-Torso Model[J]. Chin. Phys. Lett., 2012, 29(3): 114302
[2] LUO Wen-Yu**, YANG Chun-Mei, ZHANG Ren-He. Generalized Coupled-Mode Formulation for Sound Propagation in Range-Dependent Waveguides[J]. Chin. Phys. Lett., 2012, 29(1): 114302
[3] LI Qian-Qian, **, LI Zheng-Lin, ZHANG Ren-He . Applications of Waveguide Invariant Theory to the Analysis of Interference Phenomena in Deep Water[J]. Chin. Phys. Lett., 2011, 28(3): 114302
[4] LUO Wen-Yu, SCHMIDT Henrik. A Spectral Coupled-Mode Formulation for Sound Propagation around Axisymmetric Seamounts[J]. Chin. Phys. Lett., 2010, 27(9): 114302
[5] ZHANG Yan-Jun, ZHANG Ren-He, LI Feng-Hua. Frequency Dependence of Transverse Correlation Coefficient in the Yellow Sea[J]. Chin. Phys. Lett., 2010, 27(8): 114302
[6] ZHAO Zhen-Dong, WANG Ning, GAO Da-Zhi, WANG Hao-Zhong. Broadband Source Ranging in Shallow Water Using the Ω-Interference Spectrum[J]. Chin. Phys. Lett., 2010, 27(6): 114302
[7] YU Guang-Zheng**, XIE Bo-Sun, RAO Dan . Directivity of Spherical Polyhedron Sound Source Used in Near-Field HRTF Measurements[J]. Chin. Phys. Lett., 2010, 27(12): 114302
[8] LUO Wen-Yu**, SCHMIDT Henrik. Three-Dimensional Mode Coupling around a Conical Seamount and the Use of Random Discretization[J]. Chin. Phys. Lett., 2010, 27(11): 114302
[9] JI Gui-Hua, , LI Zheng-Lin, DAI Qiong-Xing. Coherence-Time of Matched-Field Processing in Shallow Water in the Presence of Linear Internal Waves[J]. Chin. Phys. Lett., 2009, 26(9): 114302
[10] LI Feng-Hua, ZHANG Ren-He. Frequency Dependence of Longitudinal Correlation Length inthe Yellow Sea[J]. Chin. Phys. Lett., 2008, 25(7): 114302
[11] PENG Han-Shu, LI Feng-Hua. Geoacoustic Inversion Based on a Vector Hydrophone Array[J]. Chin. Phys. Lett., 2007, 24(7): 114302
[12] ZHANG Ren-He, SU Xiao-Xing, LI Feng-Hua. Improvement of Low-Frequency Acoustic Spatial Correlation by Frequency-Shift Compensation[J]. Chin. Phys. Lett., 2006, 23(7): 114302
[13] LIU Jian-Jun, LI Feng-Hua, PENG Zhao-Hui. Stochastic Inversion of Seabottom Scattering Coefficients from Shallow-Water Reverberation[J]. Chin. Phys. Lett., 2003, 20(12): 114302
[14] LI Feng-Hua, LIU Jian-Jun. Bistatic Reverberation in Shallow Water: Modeling and Data Comparison[J]. Chin. Phys. Lett., 2002, 19(8): 114302
[15] GUO Liang-Hao, GONG Zai-Xiao, Wu Li-Xin. Space and Time Coherence of Acoustic Field in Shallow-Water [J]. Chin. Phys. Lett., 2001, 18(10): 114302
Viewed
Full text


Abstract