Chin. Phys. Lett.  2011, Vol. 28 Issue (11): 110503    DOI: 10.1088/0256-307X/28/11/110503
GENERAL |
Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback
SHANG Hui-Lin1**, WEN Yong-Peng2
1School of Mechanical Engineering, Shanghai Institute of Technology, Shanghai 200235
2College of Urban Railway Transportation, Shanghai University of Engineering Science, Shanghai
Cite this article:   
SHANG Hui-Lin, WEN Yong-Peng 2011 Chin. Phys. Lett. 28 110503
Download: PDF(522KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Fractal erosion of the safe basin in a Helmholtz oscillator system is studied. A linear delayed velocity feedback is employed to suppress the fractal erosion. The necessary basin erosion condition of the delayed feedback controlled system is obtained. The evolution of the boundary and area of the safe basin over time delay is also presented. It follows that the delayed velocity feedback can be used as an effective strategy to control fractal erosion of a safe basin.
Keywords: 05.45.-a      05.45.Gg      05.45.Df      02.30.Ks     
Received: 03 April 2011      Published: 30 October 2011
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Df (Fractals)  
  02.30.Ks (Delay and functional equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/11/110503       OR      https://cpl.iphy.ac.cn/Y2011/V28/I11/110503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHANG Hui-Lin
WEN Yong-Peng
[1] Leigh M C and Armin T 2010 Ocean Engin. 32 1608
[2] Lenci S and Rega G 2006 J. Micromech. Microengin. 16 390
[3] Rong H W, Wang X D, Xu W and Fang T 2008 J. Sound Vibrat. 313 46
[4] Gan C B 2006 Chaos, Solitons and Fractal 30 920
[5] Xu J, Lu Q S and Huang K L 1996 Acta Mech. Sin. 12 281
[6] Djellit I, Sprott J C and Ferchichi M R 2011 Chin. Phys. Lett. 28 060501
[7] Rega G and Lenci S 2008 J. Vibrat. Control 14 159
[8] Shang H L, Xu J 2009 Chaos, Solitons and Fractal 41 1880
[9] Shang H L 2011 Chin. Phys. Lett. 28 010502
[10] Fadi M A and Mohammad I Y 2010 Smart Mater. Struct. 19 035016
[11] Zhao H Q, Zhu Z N and Zhang J L 2011 Chin. Phys. Lett. 28 050202
[12] Wang H L and Hu H Y 2004 Int. J. Bifur. Chaos 14 2753
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 110503
[2] YUN Mei-Juan, ZHENG Wei. Fractal Analysis of Robertson-Stiff Fluid Flow in Porous Media[J]. Chin. Phys. Lett., 2012, 29(6): 110503
[3] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 110503
[4] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 110503
[5] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 110503
[6] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 110503
[7] WU Guo-Cheng, WU Kai-Teng. Variational Approach for Fractional Diffusion-Wave Equations on Cantor Sets[J]. Chin. Phys. Lett., 2012, 29(6): 110503
[8] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 110503
[9] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 110503
[10] WU Jie,ZHAN Xi-Sheng**,ZHANG Xian-He,GAO Hong-Liang. Stability and Hopf Bifurcation Analysis on a Numerical Discretization of the Distributed Delay Equation[J]. Chin. Phys. Lett., 2012, 29(5): 110503
[11] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 110503
[12] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 110503
[13] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 110503
[14] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 110503
[15] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 110503
Viewed
Full text


Abstract