GENERAL |
|
|
|
|
Dynamics of Nonclassical Correlation in Interacting Qubits under Correlated Dissipative Environments |
QIU Liang
|
Department of Physics, China University of Mining and Technology, Xuzhou 221008
|
|
Cite this article: |
QIU Liang 2011 Chin. Phys. Lett. 28 110301 |
|
|
Abstract The dynamical evolution of nonclassical correlation in interacting qubits is investigated under the correlated dissipative environments for two classes of initial states. If the correlated decay rate equals the independent decay rate, there will be stationary nonclassical correlation between the qubits prepared initially in some separable states. When the correlated decay rate is different from the independent decay rate, the nonclassical correlation between the qubits eventually decays to zero for a certain class of initial states.
|
Keywords:
03.65.Yz
03.65.Ud
03.67.Mn
|
|
Received: 21 April 2011
Published: 30 October 2011
|
|
PACS: |
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
|
|
|
[1] Datta A et al 2008 Phys. Rev. Lett. 100 050502
[2] Lanyon B P et al 2008 Phys. Rev. Lett. 101 200501
[3] Dillenschneider R and Lutz E 2009 Eur. Phys. Lett. 88 50003
[4] Dillenschneider R 2008 Phys. Rev. B 78 224413
[5] Sarandy M S 2009 Phys. Rev. A 80 022108
[6] Cui J and Fan H 2010 J. Phys. A: Math. Theor. 43 045305
[7] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[8] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404; 2009 Science 323 598
Yu T and Eberly J H 2006 Opt. Commun. 264 393
[9] Yönac M et al 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S621
[10] Das S and Agarwal G S 2009 J. Phys. B: At. Mol. Opt. Phys. 42 205502
[11] Tong Q J, An J H, Luo H G and Oh C H 2010 Phys. Rev. A 81 052330
[12] Maziero J et al 2009 Phys. Rev. A 80 044102
[13] Werlang T et al 2009 Phys. Rev. A 80 024103
[14] Fanchini F F et al 2010 Phys. Rev. A 81 052107
[15] Wang B et al 2010 Phys. Rev. A 81 014101
[16] Xiao X et al 2010 Opt. Commun. 283 3001
[17] Hao X et al 2011 Commun. Theor. Phys. 55 41
[18] Soares-Pinto D O et al 2010 Phys. Rev. A 81 062118
[19] Mazzola L et al 2010 Phys. Rev. Lett. 104 200401
[20] Xu J S et al 2010 Nature Commun. 1 7
[21] Barenco A, Deutsch D and Ekert A 1995 Phys. Rev. Lett. 74 4083
[22] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[23] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091; 2000 Nature 404 579
[24] DeMarco B, Ben-Kish A, Leibfried D et al 2002 Phys. Rev. Lett. 89 267901
[25] Blatt R and Wineland D 2008 Nature 453 1008
[26] Calarco T, Datta A, Fedichev P, Pazy E and Zoller P 2003 Phys. Rev. A 68 012310
[27] Hanson R and Burkard G 2007 Phys. Rev. Lett. 98 050502
[28] Wang X G 2001 Phys. Rev. A 64 012313
[29] Sato M and Oshikawa M 2004 Phys. Rev. A 69 054406
[30] Matera J M, Rossignoli R and Canosa N 2008 Phys. Rev. A 78 012316
[31] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[32] Luo S L 2008 Phys. Rev. A 77 042303
[33] Dakic B et al 2010 Phys. Rev. Lett. 105 190502
[34] Ge R C et al 2010 Phys. Rev. A 81 064103
[35] Rau A R P 2009 J. Phys. A: Math. Theor. 42 412002
[36] Altintas F 2010 Opt. Commun. 283 5264
[37] Jakóbczyk L and Jamróz A 2003 Phys. Lett. A 318 318
[38] An J H, Wang S J and Luo H G 2007 Physica A 382 753
[39] Dicke R H 1954 Phys. Rev. 93 99
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|