Chin. Phys. Lett.  2011, Vol. 28 Issue (11): 110202    DOI: 10.1088/0256-307X/28/11/110202
GENERAL |
Rogue Wave, Breathers and Bright-Dark-Rogue Solutions for the Coupled Schrödinger Equations
GUO Bo-Ling1, LING Li-Ming1,2**
1Institute of Applied Physics and Computational Mathematics, Beijing 100088
2The Graduate School of China Academy of Engineering Physics, Beijing 100088
Cite this article:   
GUO Bo-Ling, LING Li-Ming 2011 Chin. Phys. Lett. 28 110202
Download: PDF(529KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We construct explicit rogue wave solutions, breather solitons, and rogue-bright-dark solutions for the coupled non-linear Schrödinger equations by the Darboux transformation.
Keywords: 02.30.Ik      02.30.Hq      03.75.Nt     
Received: 12 May 2011      Published: 30 October 2011
PACS:  02.30.Ik (Integrable systems)  
  02.30.Hq (Ordinary differential equations)  
  03.75.Nt (Other Bose-Einstein condensation phenomena)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/11/110202       OR      https://cpl.iphy.ac.cn/Y2011/V28/I11/110202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUO Bo-Ling
LING Li-Ming
[1] Agrawal G P 1995 Nonlinear Fiber Optics (New York: Academic)
[2] Scott A C 1984 Physica Scripta 29 279
[3] E P Bashkin and Vagov A V 1997 Phys. Rev. B 56 6207
[4] Yan Z 2011 Financial Rogue Waves Appearing in the Coupled Nonlinear Volatility and Option Pricing Model arxiv:1101.3107v1
[5] K Dysthe, Krogstad H E and Müller P 2008 Annu. Rev. Fluid Mech. 40 287
[6] Manakov S V 1973 ZETP 65 505
[7] Forest M G, McLaughlin D W, Muraki D J and Wright O C 2000 J. Non. Sci. 10 291
[8] Wright O C and Forest M G 2000 Physica D 141 104
[9] Forest M G, Sheu S P and Wright O C 2000 Phys. Lett. A 266 24
[10] Osborne A R 2009 Nonlinear Ocean Waves (New York: Academic)
[11] Peregrine D H 1983 J. Sust. Math. Soc. B: Appl. Math. 25 16
[12] Akhmediev N, Ankiewicz A and Soto-Crespo J M 2009 Phys. Rev. E 80 026601
[13] Guo B and Ling L 2011 Acta Mathematica Scientia (submitted)
[14] Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (New York: Springer)
[15] Gu C H, Hu H S and Zhou Z X 2005 Darboux Transformations in Integrable Systems: Theory and Their Applications (Berlin: Springer)
[16] Doktorov E V and Leble S B 2007 A Dressing Method in Mathmatical Physics (New York: Springer)
[17] Ling L and Liu Q P 2010 J. Phys. A: Math. Theor. 43 434023
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 110202
[2] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 110202
[3] TAO Yong*,CHEN Xun. Statistical Physics of Economic Systems: a Survey for Open Economies[J]. Chin. Phys. Lett., 2012, 29(5): 110202
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 110202
[5] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 110202
[6] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 110202
[7] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 110202
[8] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 110202
[9] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 110202
[10] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 110202
[11] WU Cong-Jun**, Ian Mondragon-Shem, , ZHOU Xiang-Fa . Unconventional Bose–Einstein Condensations from Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2011, 28(9): 110202
[12] MENG Qing-Kuan**, ZHU Jian-Yang . Constrained Traffic of Particles on Complex Networks[J]. Chin. Phys. Lett., 2011, 28(7): 110202
[13] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 110202
[14] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 110202
[15] CAO Qing-Jie, **, HAN Ning, TIAN Rui-Lan . A Rotating Pendulum Linked by an Oblique Spring[J]. Chin. Phys. Lett., 2011, 28(6): 110202
Viewed
Full text


Abstract