Chin. Phys. Lett.  2011, Vol. 28 Issue (11): 110201    DOI: 10.1088/0256-307X/28/11/110201
GENERAL |
Inertial Lévy Flight with Nonlinear Friction
LÜ Yan**, BAO Jing-Dong
Department of Physics, Beijing Normal University, Beijing 100875
Cite this article:   
LÜ, Yan, BAO Jing-Dong 2011 Chin. Phys. Lett. 28 110201
Download: PDF(631KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Lévy flight with nonlinear friction is studied. Due to the occurrence of extremely long jumps Lévy flights often possess infinite variance and are physically problematic if describing the dynamics of a particle of finite mass. However, by introducing nonlinear friction, we show that the stochastic process subject to Lévy noise exhibits finite variance, leading to a well-defined kinetic energy. In the force-free field, normal diffusion behavior is observed and the diffusion coefficient decreases with Lévy index μ. Furthermore, we find a kinetic resonance of the particle in the harmonic potential to the external oscillating field in the generally underdamped region and the value of the linear friction γ0 determines whether resonance occurs or not.
Keywords: 02.50.Ey      05.40.Fb      05.10.Gg     
Received: 08 August 2011      Published: 30 October 2011
PACS:  02.50.Ey (Stochastic processes)  
  05.40.Fb (Random walks and Levy flights)  
  05.10.Gg (Stochastic analysis methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/11/110201       OR      https://cpl.iphy.ac.cn/Y2011/V28/I11/110201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yan
BAO Jing-Dong
[1] Ott A, Bouchaud J P, Langevin D and Urbach W 1990 Phys. Rev. Lett. 65 2201
[2] Zumofen G and Klafter J 1995 Phys. Rev. E 51 2805
[3] Viswanathan G M, Afanasyev V, Buldyrev S V, Murphy E J, Prince P A and Stanley H E 1996 Nature 381 413
[4] Jespersen S, Metzler R and Fogedby H C 1999 Phys. Rev. E 59 2736
[5] Shlesinger M F, West B J and Klafter J 1987 Phys. Rev. Lett. 58 1100
[6] Chechkin A V, Klafter J, Gonchar V Y, Metzler R and Tanatarov L V 2003 Phys. Rev. E 67 010102(R)
[7] Mantegna R N and Stanley H E 1994 Phys. Rev. Lett. 73 2946
[8] Koponen I 1995 Phys. Rev. E 52 1197
[9] Chechkin A V, Gonchar V Y, Klafter J, Gonchar V Y, and Metzler R 2005 Phys. Rev. E 72 010101(R)
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 110201
[2] QI Kai,TANG Ming**,CUI Ai-Xiang,FU Yan. The Slow Dynamics of the Zero-Range Process in the Framework of the Traps Model[J]. Chin. Phys. Lett., 2012, 29(5): 110201
[3] ZHU Zi-Qi, JIN Xiao-Ling, HUANG Zhi-Long. Search for Directed Networks by Different Random Walk Strategies[J]. Chin. Phys. Lett., 2012, 29(3): 110201
[4] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 110201
[5] YAN Xiao-Yong, HAN Xiao-Pu, ZHOU Tao, WANG Bing-Hong** . Exact Solution of the Gyration Radius of an Individual's Trajectory for a Simplified Human Regular Mobility Model[J]. Chin. Phys. Lett., 2011, 28(12): 110201
[6] LIU Yu-Zhi, AN Hai-Long, ZHANG Su-Hua, YU Hui, ZHAN Yong, ZHANG Hai-Lin. Electrostatic Interactions Determining the Selectivity of KcsA Channel and Its Mutants[J]. Chin. Phys. Lett., 2010, 27(8): 110201
[7] C. F. Lo. Dynamics of Fokker-Planck Equation with Logarithmic Coefficients and Its Application in Econophysics[J]. Chin. Phys. Lett., 2010, 27(8): 110201
[8] YANG Yue, HU Han-Ping, XIONG Wei, CHEN Jiang-Hang . Network Traffic Anomaly Detection Method Based on a Feature of Catastrophe Theory[J]. Chin. Phys. Lett., 2010, 27(6): 110201
[9] ZHANG Li, CAO Li. Effect of Correlated Noises in a Genetic Model[J]. Chin. Phys. Lett., 2010, 27(6): 110201
[10] ZHAO Liang, LUO Xiao-Qin, WU Dan, ZHU Shi-Qun, GU Ji-Hua. Entropic Stochastic Resonance Driven by Colored Noise[J]. Chin. Phys. Lett., 2010, 27(4): 110201
[11] MENG Qing-Kuan, ZHU Jian-Yang. Self-Organization of Weighted Networks in Connection with the Misanthrope Process[J]. Chin. Phys. Lett., 2009, 26(8): 110201
[12] AN Hai-Long, LIU Yu-Zhi, ZHANG Su-Hua, ZHAN Yong, ZHANG Hai-Lin. Properties of Hydrated Alkali Metals Aimed at the Ion Channel Selectivity[J]. Chin. Phys. Lett., 2008, 25(9): 110201
[13] YANG Han-Xin, WANG Bing-Hong, LIU Jian-Guo, HAN Xiao-Pu, ZHOU Tao,. Step-by-Step Random Walk Network with Power-Law Clique-Degree Distribution[J]. Chin. Phys. Lett., 2008, 25(7): 110201
[14] WU Xiao-Yan, LIU Zong-Hua. Epidemic Diffusion on Complex Networks[J]. Chin. Phys. Lett., 2007, 24(4): 110201
[15] HAN Li-Bo, GONG Xiao-Long, CAO Li, WU Da-Jin. Influence of Coloured Correlated Noises on Probability Distribution and Mean of Tumour Cell Number in the Logistic Growth Model[J]. Chin. Phys. Lett., 2007, 24(3): 110201
Viewed
Full text


Abstract