CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Mechanical Properties and Defect Evolution of Kr-Implanted 6H-SiC |
XU Chao-Liang1,2**, ZHANG Chong-Hong1, ZHANG Yong 1, ZHANG Li-Qing1, YANG Yi-Tao1, JIA Xiu-Jun1, LIU Xiang-Bing2, HUANG Ping2, WANG Rong-Shan2
|
1Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000
2Suzhou Nuclear Power Research Institute, Suzhou 215004
|
|
Cite this article: |
XU Chao-Liang, ZHANG Chong-Hong, ZHANG Yong et al 2011 Chin. Phys. Lett. 28 106103 |
|
|
Abstract Specimens of silicon carbide (6H-SiC) were irradiated with 5 MeV Kr ions (84Kr19+) for three fluences of 5×1013, 2×1014 and 1×1015 ions/cm2, and subsequently annealed at room temperature, 500 °C, 700 °C and 1000 °C, respectively. The strain of the specimens was investigated with high resolution XRD and different defect evolution processes are revealed. An interpretation of the defect evolution and migration is given to explain the strain variation. The mechanical properties of the specimens were studied by using a nano−indentation technique in continuous stiffness measurement (CSM) mode with a diamond Berkovich indenter. For specimens irradiated with fluences of 5×1013 or 2×1014 ions/cm2, hardness values exceed that of un−implanted SiC. However, hardness sharply degrades for specimens irradiated with the highest fluence of 1×1015 ions/cm2. The specimens with fluences of 5×1013 and 2×1014 ions/cm2 and subsequently annealed at 700 °C and 500 °C, respectively, show the maximum hardness value.
|
Keywords:
61.72.Uj
61.80.-x
62.25.-x
|
|
Received: 22 June 2011
Published: 28 September 2011
|
|
|
|
|
|
[1] Zhang C H, Sun Y M, Song Y, Shibayama T, Jin Y F and Zhou L H 2007 Nucl. Instrum. Meth. Phys. Res. B 256 243
[2] Benyagoub A and Audren A 2009 Nucl. Instrum. Meth. Phys. Res. B 267 1255
[3] Tromas C, Audurier V, Leclerc S, Beaufort M F, Declemy A and Barbot J F 2008 J. Nucl. Mater. 373 142
[4] Jean Francois B, Stephanie L, Marie-Laure D, Erwan O, Romaric M, Frederic P, Dominique E, Marie-Francoise D, Marie-France B, Alain D, Valerie A and Christophe T 2009 Phys. Status Solidi A 206 1916
[5] Biersack J P and Haggmark L G 1980 Nucl. Instrum. Methods 174 257
[6] Leclerc S, Declemy A, Beaufort M F, Tromas C and Barbot J F 2005 J. Appl. Phys. 98 113506
[7] Debelle A, Thome L, Dompoint D, Boulle A, Garrido F, Jagielski J and Chaussende D 2010 J. Phys. D: Appl. Phys. 43 455408
[8] Velisa G, Debelle A, Vincent L, Thomé L, Declémy A and Pantelica D 2010 J. Nucl. Mater. 402 87
[9] Li J, Porter L and Yip S 1998 J. Nucl. Mater. 255 139
[10] Leclerc S, Beaufort M F, Declemy A and Barbot J F 2010 J. Nucl. Mater. 397 132
[11] Taniguchi S, Kitahara A, Wakayama S, Eriguchi E and Suyama N 2001 Nucl. Instrum. Meth. Phys. Res. B 175-177 647
[12] Pelletier H, Mille P, Cornet A, Grob J J, Stoquert J P and Muller D 1999 Nucl. Instrum. Methods Phys. Res. B 148 824
[13] Gao F M, He J L, Wu E D, Liu S M, Yu D L, Li D C, Zhang S Y and Tian Y J 2003 Phys. Rev. Lett. 91 015502
[14] Iseki T, Tezuka M, Kim C S, Suzuki T, Suematsu H and Yano T 1993 J. Nucl. Sci. Technol. 30 68
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|