Chin. Phys. Lett.  2011, Vol. 28 Issue (10): 106104    DOI: 10.1088/0256-307X/28/10/106104
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
H2-Assistance One-Step Growth of Si Nanowires and Their Growth Mechanism
QIU Ming-Xia1, RUAN Shuang-Chen1**, GAO Biao2, HUO Kai-Fu2, ZHAI Jian-Pang1, LI Ling1, LIAO Hui1, XU Xin-Tong1
1Shenzhen Key Laboratory of Laser Engineering, College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060
2College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081
Cite this article:   
QIU Ming-Xia, RUAN Shuang-Chen, GAO Biao et al  2011 Chin. Phys. Lett. 28 106104
Download: PDF(792KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Large-scale nanowires are grown on Si wafers by the catalyst-free one-step thermal reaction method in Ar/H2 mixture atmosphere at 1000 °C. The x−ray diffraction and energy dispersive x-ray spectroscopy results reveal that the final nanowires are of silicon nanostructures. The field emission scanning electron microscopy shows that these self-organized Si nanowires (SiNWs) possess curly crowns with diameters varying from 10 to 300 nm and lengths of up to several hundreds of micrometers. The transmission electron microscopy indicates that the nanowires are pure Si with amorphous structures. All the measurement results show that no silicon oxide is generated in our products. The growth mechanism is proposed tentatively. Silicon oxide is reduced into Si nanoparticles under the Ar/H2 mixture, which is the main reason for the formation of such SiNWs. Our experiments offer a method of preparing Si nanostructures by simply reducing silicon oxide at high temperature.
Keywords: 61.72.Uf      62.23.Hj      34.50.Lf      46.70.-p     
Received: 11 August 2011      Published: 28 September 2011
PACS:  61.72.uf (Ge and Si)  
  62.23.Hj (Nanowires)  
  34.50.Lf (Chemical reactions)  
  46.70.-p (Application of continuum mechanics to structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/10/106104       OR      https://cpl.iphy.ac.cn/Y2011/V28/I10/106104
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QIU Ming-Xia
RUAN Shuang-Chen
GAO Biao
HUO Kai-Fu
ZHAI Jian-Pang
LI Ling
LIAO Hui
XU Xin-Tong
[1] Cui Y and Lieber C M 2001 Science 291 851
[2] Gunawan O, Sekaric L, Majumdar A, Rooks M, Appenzeller J, Sleight J W, Guha S and Haensch W 2008 Nano Lett. 8 1566
[3] Zheng G F, Lu W, Jin S and Lieber C M 2004 Adv. Mater. 16 1890
[4] Tian B, Zheng X L, Kempa T J, Fang Y, Yu N F, Yu G H, Huang J L and Lieber C M 2007 Nature 449 885
[5] Li Z, Chen Y, Li X, Kamins T I, Nauka K and Williams R S 2004 Nano Lett. 4 245
[6] Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A and Cui Y 2008 Nature Nanotechnol. 3 31
[7] Hochbaum A I, Chen R K, Delgado R D, Liang W J, Garnett E C, Najarian M, Majumdar A and Yang P D 2008 Nature 451 163
[8] Morales A M and Lieber C M 1998 Science 279 208
[9] Wu Y, Cui Y, Huynh L, Barrelet C J, Bell D C and Lieber C M 2004 Nano Lett. 4 433
[10] Li W N, Ding Y S, Yuan J K, Gomez S, Suib S L, Galasso F S and DiCarlo J F 2005 J. Phys. Chem. B 109 3291
[11] Ge S P, Jiang K L, Lu X X, Chen Y F, Wang R and Fan S S 2005 Adv. Mater. 17 56
[12] Renard V T, Jublot M, Gergaud P, Cherns P, Rouchon D, Chabli A and Jousseaume V 2009 Nature Nanotechnol. 4 654
[13] Shi X L et al 2008 Sci. Chin. E Tech. Sci. 51 1433
[14] Niu J J , Sha J and Yang D 2004 Physica E 24 278
[15] Pan Z W, Dai Z R, Lee S T and Wang Z L 2001 J. Phys. Chem. B 105 2507
[16] Holmes J D, Johnston K P, Doty R C and Korgel B A 2000 Science 287 1471
[17] Hou Z L, Zhou H F, Yuan J, Kang Y Q, Yang H J, Jin H B and Cao M S 2011 Chin. Phys. Lett. 28 037702
[18] Cheng J, Zou X P, Song W L, Cao M S, Su Y, Yang G Q, Lu X M and Zhang F X 2010 Chin. Phys. Lett. 27 057302
[19] Peng K Q, Hu J J, Yan Y J, Wu Y, Fang H, Xu Y, Lee S T and Zhu J 2006 Adv. Funct. Mater. 16 387
[20] Zhou X T, Hu J Q, Li C P, Ma D D, Lee C S and Lee S T 2003 Chem. Phys. Lett. 369 220
Related articles from Frontiers Journals
[1] ZHAI Hong-Sheng, ZHOU Pan-Wang. The Rate Constant Calculations for the Reaction H(2S)+NH(X3Σ-) to N(4S)+H2 by using Quantum Mechanics Method[J]. Chin. Phys. Lett., 2012, 29(6): 106104
[2] CHENG Jie,YUE Xian-Fang**,FENG Hai-Ran. Effect of Rotational Excitation on Stereodynamics for the Reactive Collision Between N(2D) and H2[J]. Chin. Phys. Lett., 2012, 29(4): 106104
[3] CHEN Ke, HE Jian-Jun, LI Ming-Yu, LaPierre R. Fabrication of GaAs Nanowires by Colloidal Lithography and Dry Etching[J]. Chin. Phys. Lett., 2012, 29(3): 106104
[4] KE Wei-Wei, FENG Xue**, HUANG Yi-Dong. Si-Nanocrystals with Bimodal Size Distribution in Evenly Annealed SiO Revealed with Raman Scattering[J]. Chin. Phys. Lett., 2012, 29(1): 106104
[5] ZHANG Juan, CHU Tian-Shu**, DONG Shun-Le**, YUAN Shu-Ping, FU Ai-Ping, DUAN Yun-Bo . Influence of Isotope Effects on the Stereodynamics of the N(4S)+H2 → NH+H Reactive System: a QCT Study[J]. Chin. Phys. Lett., 2011, 28(9): 106104
[6] ZHAO Li, SUN Ping, LIU Chao-Zhuo* . Quasi-Classical Trajectory Calculations of Reaction Stereodynamics of H+OH( v = 0, j = 0)H2+O(3 P )[J]. Chin. Phys. Lett., 2011, 28(8): 106104
[7] CHENG Jie, YUE Xian-Fang** . Product Rotational Polarization in the Li+HF ( v=0, j=0) Reaction and Its Isotopic Variants[J]. Chin. Phys. Lett., 2011, 28(8): 106104
[8] XIE Shi-Feng, CHEN Shang-Da**, SOH Ai-Kah . The Effect of Atomic Vacancies and Grain Boundaries on Mechanical Properties of GaN Nanowires[J]. Chin. Phys. Lett., 2011, 28(6): 106104
[9] LI Bin, **, LI Chuan-Xi, WEI Cheng-Long, . Surface Effects on the Postbuckling of Nanowires[J]. Chin. Phys. Lett., 2011, 28(4): 106104
[10] GAO Li-Peng, HAN Pei-De**, MAO Xue, FAN Yu-Jie, HU Shao-Xu, ZHAO Chun-Hua, MI Yan-Hong . Deep Energy Levels Formed by Se Implantation in Si[J]. Chin. Phys. Lett., 2011, 28(3): 106104
[11] WANG Tao, YUE Xian-Fang . QCT Calculations of Reactions of F+LiHLiF+H and F+LiDLiF+D: Product Polarization and Isotope Effects[J]. Chin. Phys. Lett., 2011, 28(2): 106104
[12] XIAO Jing, YANG Chuan-Lu**, WANG Mei-Shan, MA Xiao-Guang . Collision Energies Effect on Stereodynamics for Ne+H2+→NeH++H Reaction[J]. Chin. Phys. Lett., 2011, 28(1): 106104
[13] DAI Jun, LI Zhen-Yu, YANG Jin-Long. Electron-phonon Coupling in Gallium-Doped Germanium[J]. Chin. Phys. Lett., 2010, 27(8): 106104
[14] YU Yan-Long, ZHENG Li-Hui, XU Xin, SUN Hong-Yu** . Thermal Expansion Behavior of Hexagonal ZnS Single-Crystal Nanowires Embedded in Anodized Aluminum Oxide Template[J]. Chin. Phys. Lett., 2010, 27(10): 106104
[15] NIE Chao, ZHANG Rong, XIE Zi-Li, XIU Xiang-Qiang, LIU Bin, FU De-Yi, LIU Qi-Jia, HAN Ping, GU Shu-Lin, SHI Yi, ZHENG You-Dou. Synthesis of [100] Wurtzite InN Nanowires and [011] Zinc-Blende InN Nanorods[J]. Chin. Phys. Lett., 2008, 25(5): 106104
Viewed
Full text


Abstract