CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Influence of Surface Effects on the Elastic Properties of Silicon Nanowires with Different Cross Sections |
GU Fang1, ZHANG Jia-Hong2**, XU Lin-Hua1, LIU Qing-Quan2, LI Min2
|
1College of Mathematics and Physics, Nanjing University of Information Science and Technology, Nanjing 210044
2College of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044
|
|
Cite this article: |
GU Fang, ZHANG Jia-Hong, XU Lin-Hua et al 2011 Chin. Phys. Lett. 28 106102 |
|
|
Abstract Based on the anharmonic Keating model and the modified bending theory, an analytical semi-continuum atomistic lattice model is proposed for the size-dependent bending mechanical analysis of silicon nanowires (SiNWs) with different cross-sectional shapes. The semi-continuum model proves that the elastic behavior of SiNWs is size-dependent and predicts softer or stiffer SiNWs which depend on the relaxation coefficient and the surface tension. It also shows that the size effects of the mechanical responses of SiNWs depend on not only surface effects but also the cross-sectional shapes of SiNWs.
|
Keywords:
61.46.Km
62.20.D-
62.25.-g
68.03.Cd
|
|
Received: 21 January 2011
Published: 28 September 2011
|
|
PACS: |
61.46.Km
|
(Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))
|
|
62.20.D-
|
(Elasticity)
|
|
62.25.-g
|
(Mechanical properties of nanoscale systems)
|
|
68.03.Cd
|
(Surface tension and related phenomena)
|
|
|
|
|
[1] Cui Y, Zhong Z H, Wang D L, Wang W U and Lieber C M 2003 Nano Lett. 3 149
[2] Hahn J and Lieber C M 2004 Nano Lett. 4 51
[3] Yang C, Zhang G, Lee D Y, Li H M, Lim Y D, Yoo W J, Park Y J and Kim J M 2011 Chin. Phys. Lett. 28 035202
[4] Li X X, Ono T, Wang Y L and Esashi M 2003 Appl. Phys. Lett. 83 3081
[5] Kizuka T, Takatani Y, Asaka K and Yoshizaki R 2005 Phys. Rev. B 72 035333
[6] Zhu Y, Xu F, Qin Q, Fung W Y and Lu W 2009 Nano Lett. 11 3934
[7] Stan G, Krylyuk S, Davydov A V and Cook R F 2010 Nano Lett. 10 2031
[8] Tabib-Azar M, Nassirou M, Wang R, Sharma S, Kamins T I, Islam M S and Williams R S 2005 Appl. Phys. Lett. 87 113102
[9] Paulo A S, Bokor J, Howe R T, He R, Yang P, Gao D, Carraro C and Maboudian R 2005 Appl. Phys. Lett. 87 053111
[10] Jin Q H, Li T, Zhou P and Wang Y L 2009 J. Nanomater. 2009 319842
[11] Lee B and Rudd R E 2007 Phys. Rev. B 75 195328
[12] Wang J, Huang Q A and Yu H 2008 Chin. Phys. Lett. 25 1403
[13] Zhang W W, Huang Q A, Yu H and Lu L B 2009 Adv. Mater. Res. 60-61 315
[14] Guo J G and Zhao Y P 2007 Nanotechnology 18 295701
[15] Wang G F and Feng X Q 2009 Appl. Phys. Lett. 94 141913
[16] Zhang J H, Huang Q A, Yu H and Wang J 2009 J. Phys. D: Appl. Phys. 42 045409
[17] Keating P N 1966 Phys. Rev. 145 637
[18] Rücker H and Methfessel M 1995 Phys. Rev. B 52 11059
[19] Guo J G and Zhao Y P 2005 J. Appl. Phys. 98 074306
[20] Webb M B, Men F K, Swartzentruber B S, Kariotis R and Lagally M G 1991 Surf. Sci. 242 23
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|