GENERAL |
|
|
|
|
Tripartite Entanglement via Microwave Driven Atomic Coherence |
JIN Li-Xia1, LüXin-You2, SONG Pei-Jun1, YANG Xiao-Xue1 |
1School of Physics Huazhong University of Science andTechnology, Wuhan 4300742School of Physics, Ludong University, Yantai 264025 |
|
Cite this article: |
JIN Li-Xia, LüXin-You, SONG Pei-Jun et al 2010 Chin. Phys. Lett. 27 040310 |
|
|
Abstract We propose a new scheme to achieve the tripartite entanglement based on the standard criteria [Phys. Rev. A 67 (2003) 052315] in a inverse-tripod atomic system. In our scheme, the atomic coherence is introduced by two microwave fields which drive the upper three levels of atom. By numerically simulating the dynamics of system, we investigate the generation and evolution of entanglement in the presence of atom and cavity decay. As a result, the present research provides an efficient approach to achieve fully tripartite entanglement with different frequencies and initial states for each entangled mode, which may have impact on the progress of multicolored multi-notes quantum information networks.
|
Keywords:
03.67.Mn
42.50.Dv
42.50.Pq
|
|
Received: 16 October 2009
Published: 27 March 2010
|
|
PACS: |
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
|
|
|
[1] Bennett C H et al 1993 Phys. Rev. Lett. 70 1895 [2] Bouwmeester D et al 1997 Nature 390 575 [3] Ekert A K 1991 Phys. Rev. Lett. 67 661 [4] Barenco A et al 1995 Phys. Rev. Lett. 74 4083 [5] Li G, Tan H and Wu S 2004 Phys. Rev. A 70 064301 Li G, Yang Y et al 2004 Phys. Rev. A 69 {014301} [6] Raimond J M et al 2001 Rev. Mod. Phys. 73 565 [7] Yang X and Wu Y 2005 J. Opt. B 7 54 [8] Ou Z Y et al 1992 Phys. Rev. Lett. 68 3663 [9] Josse V et al 2004 Phys. Rev. Lett. 92 123601 [10] Braunstein S L and van Loock P 2005 Rev. Mod. Phys. 77 513 [11] Furusawa A et al 1998 Science 282 706 [12] Li X Y, Pan Q et al 2002 Phys. Rev. Lett. 88 047904 [13] Lloyd S and Braunstein S L 1999 Phys. Rev. Lett. 82 1784 [14] van Loock P and Furusawa A 2003 Phys. Rev. A 67 052315 [15] Villar A S et al 2006 Phys. Rev. Lett. 97 140504 [16] Wu Y and Deng L 2004 Opt. Lett. 29 1144 [17] Yu Y B et al 2006 Phys. Rev. A 74 042332 [18] Hu X and Zou J 2008 Phys. Rev. A 78 045801 [19] Xiong H et al 2005 Phys. Rev. Lett. 94 023601 [20] Duan L M et al 2000 Phys. Rev. Lett. 84 2722 [21] Hillery M and Zubairy M S 2006 Phys. Rev. Lett. 96 050503 [22] Tan H T et al 2005 Phys. Rev. A 72 022305 [23] L\"{u} X-Y et al 2008 J. Phys. B 41 035501 [24] Qamar S et al 2008 Phys. Rev. A 77 062308 [25] Wu Y, Wen L and Zhu Y 2003 Opt. Lett. 28 631 [26] Wu Y and Deng L 2004 Phys Rev. Lett. 93 143904 [27] D\"{u}r W, Cirac J I and Tarrach R 1999 Phys. Rev. Lett. 83 3562 [28] Meschede D, Walther H and Muller G 1985 Phys. Rev. Lett. 54 551
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|