GENERAL |
|
|
|
|
Preparation of Cluster States of Atomic Qubits in Cavity QED |
GUO Yu1, DENG Hong-Liang2 |
1Department of Physics and Electronic Science, ChangshaUniversity of Science and Technology, Changsha 4101142College of Physical Science and Technology, Huanggang NormalUniversity, Huanggang 438000 |
|
Cite this article: |
GUO Yu, DENG Hong-Liang 2010 Chin. Phys. Lett. 27 040309 |
|
|
Abstract We propose an optical scheme to generate cluster states of atomic qubits, with each trapped in separate optical cavity, via atom-cavity-laser interaction. The quantum information of each qubit is encoded on the degenerate ground states of the atom, hence the entanglement between them is relatively stable against spontaneous emission. A single-photon source and two classical fields are employed in the present scheme. By controlling the sequence and time of atom-cavity-laser interaction, we show that the atomic cluster states can be produced deterministically
|
Keywords:
03.67.Mn
03.65.Ud
42.50.Dv
42.50.-p
|
|
Received: 23 December 2009
Published: 27 March 2010
|
|
PACS: |
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
42.50.-p
|
(Quantum optics)
|
|
|
|
|
[1] Bouwmeester D, Ekert A and Zeilinger A 2000 The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum computation (Berlin: Springer) [2] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University) [3] Bennett C H et al 1993 Phys. Rev. Lett. 70 1895 [4] Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881 [5] Bennett C H et al 1992 Phys. Rev. Lett. 68 557 [6] Gisin N et al 2002 Rev. Mod. Phys. 74 145 [7] Dur W et al 2000 Phys. Rev. A 62 062314 [8] Greenberger D M et al 1990 Am. J. Phys. 58 1131 [9] Guo Y and Kuang L M 2007 J. Phys. B 40 3309 Guo Y and Deng H L 2009 J. Phys. B 42 {215507} [10] Briegel H J et al 2001 Phys. Rev. Lett. 86 910 [11] Raussendorf R et al 2001 Phys. Rev. Lett. 86 5188 [12] Walther P et al 2005 Nature 434 169 [13] Zou X B and Mathis W 2005 Phys. Rev. A 71 032308 [14] Zhang A N et al 2006 Phys. Rev. A 73 022330 [15] Prevedel R et al 2007 Nature 445 65 [16] Wang W F et al 2008 Chin. Phys. Lett. 25 839 [17] Zheng S B 2006 Phys. Rev. A 73 065802 [18] Browne D E et al 2005 Phys. Rev. Lett. 95 010501 [19] Cho J and Lee H W 2005 Phys. Rev. Lett. 95 160501 [20] Zou X B and Mathis W 2005 Phys. Rev. A 72 013809 [21] Dong P et al 2005 Phys. Rev. A 73 033818 [22] Yang R C et al 2007 Commun. Theor. Phys. 47 53 [23] Zhang X L et al 2007 Phys. Rev. A 75 034308 [24] Louis S F R et al 2007 Phys. Rev. A 75 042323 [25] Zhou Y L et al 2009 Chin. Phys. Lett. 26 060301 [26] Du G et al 2009 Chin. Phys. Lett. 26 104201 [27] Tan T et al 2006 Phys. Rev. Lett. 97 230501 [28] Zhang X L et al 2006 Phys. Rev. A 74 024303 [29] Song K H et al 2009 Chin. Phys. Lett. 26 120302 [30] Guo G P et al 2007 Phys. Rev. A 75 050301 [31] Devitt S J et al 2007 Phys. Rev. A 76 052312 [32] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) [33] Huang Y P and Moore M G 2008 Phys. Rev. A 77 032349 [34] Huhn A et al 2002 Phys. Rev. Lett. 89 067901 [35] Keller M et al 2004 Nature 431 1075 [36] Chen S et al 2006 Phys. Rev. Lett. 97 173004 [37] Michler P et al 2000 Science 290 2282 [38] Santori C et al 2001 Phys. Rev. Lett. 86 1502 [39] Kurtsiefer C et al 2000 Phys. Rev. Lett. 85 290 [40] Aharonovich I et al 2009 Phys. Rev. B 79 235316 [41] Greentree A D et al 2006 Phys. Rev. A 73 013818 [42] Fern\v{e}e M J et al 2007 Phys. Rev. A 75 043815 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|