Chin. Phys. Lett.  2010, Vol. 27 Issue (4): 040310    DOI: 10.1088/0256-307X/27/4/040310
GENERAL |
Tripartite Entanglement via Microwave Driven Atomic Coherence

JIN Li-Xia1, LüXin-You2, SONG Pei-Jun1, YANG Xiao-Xue1

1School of Physics Huazhong University of Science andTechnology, Wuhan 4300742School of Physics, Ludong University, Yantai 264025
Cite this article:   
JIN Li-Xia, LüXin-You, SONG Pei-Jun et al  2010 Chin. Phys. Lett. 27 040310
Download: PDF(401KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We propose a new scheme to achieve the tripartite entanglement based on the standard criteria [Phys. Rev. A 67 (2003) 052315] in a inverse-tripod atomic system. In our scheme, the atomic coherence is introduced by two microwave fields which drive the upper three levels of atom. By numerically simulating the dynamics of system, we investigate the generation and evolution of entanglement in the presence of atom and cavity decay. As a result, the present research provides an efficient approach to achieve fully tripartite entanglement with different frequencies and initial states for each entangled mode, which may have impact on the progress of multicolored multi-notes quantum information networks.

Keywords: 03.67.Mn      42.50.Dv      42.50.Pq     
Received: 16 October 2009      Published: 27 March 2010
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/4/040310       OR      https://cpl.iphy.ac.cn/Y2010/V27/I4/040310
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIN Li-Xia
LüXin-You
SONG Pei-Jun
YANG Xiao-Xue
[1] Bennett C H et al 1993 Phys. Rev. Lett. 70 1895
[2] Bouwmeester D et al 1997 Nature 390 575
[3] Ekert A K 1991 Phys. Rev. Lett. 67 661
[4] Barenco A et al 1995 Phys. Rev. Lett. 74 4083
[5] Li G, Tan H and Wu S 2004 Phys. Rev. A 70 064301
Li G, Yang Y et al 2004 Phys. Rev. A 69 {014301}
[6] Raimond J M et al 2001 Rev. Mod. Phys. 73 565
[7] Yang X and Wu Y 2005 J. Opt. B 7 54
[8] Ou Z Y et al 1992 Phys. Rev. Lett. 68 3663
[9] Josse V et al 2004 Phys. Rev. Lett. 92 123601
[10] Braunstein S L and van Loock P 2005 Rev. Mod. Phys. 77 513
[11] Furusawa A et al 1998 Science 282 706
[12] Li X Y, Pan Q et al 2002 Phys. Rev. Lett. 88 047904
[13] Lloyd S and Braunstein S L 1999 Phys. Rev. Lett. 82 1784
[14] van Loock P and Furusawa A 2003 Phys. Rev. A 67 052315
[15] Villar A S et al 2006 Phys. Rev. Lett. 97 140504
[16] Wu Y and Deng L 2004 Opt. Lett. 29 1144
[17] Yu Y B et al 2006 Phys. Rev. A 74 042332
[18] Hu X and Zou J 2008 Phys. Rev. A 78 045801
[19] Xiong H et al 2005 Phys. Rev. Lett. 94 023601
[20] Duan L M et al 2000 Phys. Rev. Lett. 84 2722
[21] Hillery M and Zubairy M S 2006 Phys. Rev. Lett. 96 050503
[22] Tan H T et al 2005 Phys. Rev. A 72 022305
[23] L\"{u} X-Y et al 2008 J. Phys. B 41 035501
[24] Qamar S et al 2008 Phys. Rev. A 77 062308
[25] Wu Y, Wen L and Zhu Y 2003 Opt. Lett. 28 631
[26] Wu Y and Deng L 2004 Phys Rev. Lett. 93 143904
[27] D\"{u}r W, Cirac J I and Tarrach R 1999 Phys. Rev. Lett. 83 3562
[28] Meschede D, Walther H and Muller G 1985 Phys. Rev. Lett. 54 551
Related articles from Frontiers Journals
[1] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 040310
[2] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 040310
[3] CHEN Peng,QIAN Jun,CHEN Dong-Yuan,HU Zheng-Feng**,WANG Yu-Zhu**. Interference of a Narrowband Biphoton with Double Electromagnetically Induced Transparency in an N-Type System[J]. Chin. Phys. Lett., 2012, 29(4): 040310
[4] GAO Gui-Long,SONG Fu-Quan,HUANG Shou-Sheng,WANG Yan-Wei,FAN Zhi-Qiang,YUAN Xian-Zhang,JIANG Nian-Quan**. Producing and Distinguishing χ-Type Four-Qubit States in Flux Qubits[J]. Chin. Phys. Lett., 2012, 29(4): 040310
[5] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 040310
[6] CAO Ming-Tao, HAN Liang, QI Yue-Rong, ZHANG Shou-Gang, GAO Hong, LI Fu-Li. Calculation of the Spin-Dependent Optical Lattice in Rubidium Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(3): 040310
[7] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 040310
[8] S. P. Toh**, Hishamuddin Zainuddin, Kim Eng Foo,. Randomly Generating Four Mixed Bell-Diagonal States with a Concurrences Sum to Unity[J]. Chin. Phys. Lett., 2012, 29(1): 040310
[9] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 040310
[10] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 040310
[11] LI Jun-Wang, WU Chun-Wang, DAI Hong-Yi** . Quantum Information Transfer in Circuit QED with Landau–Zener Tunneling[J]. Chin. Phys. Lett., 2011, 28(9): 040310
[12] SUN Ke-Wei**, CHEN Qing-Hu . Ground-State Behavior of the Quantum Compass Model in an External Field[J]. Chin. Phys. Lett., 2011, 28(9): 040310
[13] LIU Zhi-Qiang, LIANG Xian-Ting** . Non-Markovian and Non-Perturbative Entanglement Dynamics of Biomolecular Excitons[J]. Chin. Phys. Lett., 2011, 28(8): 040310
[14] ZHENG An-Shou, **, LIU Ji-Bing, CHEN Hong-Yun . N−Qubit W State of Spatially Separated Atoms via Fractional Adiabatic Passage[J]. Chin. Phys. Lett., 2011, 28(8): 040310
[15] FANG Bin, LIU Bi-Heng, HUANG Yun-Feng**, SHI Bao-Sen, GUO Guang-Can . Spectrum Analysis of a Pulsed Photon Source Generated from Periodically Poled Lithium Niobate[J]. Chin. Phys. Lett., 2011, 28(7): 040310
Viewed
Full text


Abstract