Chin. Phys. Lett.  2010, Vol. 27 Issue (4): 040202    DOI: 10.1088/0256-307X/27/4/040202
GENERAL |
Lie Algebra and Lie Super Algebra for Integrable Couplings of C-KdV Hierarchy
TAO Si-Xing1,2, XIA Tie-Cheng1
1Department of Mathematics, Shanghai University, Shanghai2004442Department of Mathematics, Shangqiu Normal University, Shangqiu476000
Cite this article:   
TAO Si-Xing, XIA Tie-Cheng 2010 Chin. Phys. Lett. 27 040202
Download: PDF(333KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Based on the constructed Lie algebra and Lie super algebra, the integrable couplings and super-integrable couplings of the C-KdV hierarchy are obtained respectively. Furthermore, its super-Hamiltonian structures are presented by using super-trace identity.

Keywords: 02.20.Sv      02.30.Ik      02.30.Jr     
Received: 05 November 2009      Published: 27 March 2010
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/4/040202       OR      https://cpl.iphy.ac.cn/Y2010/V27/I4/040202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TAO Si-Xing
XIA Tie-Cheng
[1] Sun H Z and Han Q Z 1999 Lie Algebras and Lie Super Algebras and Their Applications in Physics (Beijing: Peking University) p 157 (in Chinese)
[2] Wang P, Fang J H and Wang X M 2009 Chin. Phys. Lett. 26 034501
[3] Pang T, Fang J H, Zhang M J, Lin P and Lu K 2009 Chin. Phys. Lett. 26 070203
[4] Jia X Y and Wang N 2009 Chin. Phys. Lett. 26 080201
[5] Fang J H, Zhang M J and Lu K 2009 Chin. Phys. Lett. 26 110202
[6] Zhang M J, Fang J H, Lu K and Zhang K J 2009 Chin. Phys. Lett. 26 120201
[7] Tu G Z 1989 J. Math. Phys. 30 330
[8] Tu G Z 1990 J. Phys. A: Math. Gen. 23 3903
[9] Ma W X 1992 Chin. J. Comtemp. Math. 13 79
[10] Tu G Z and Ma W X 1992 J. Partial Differ. Equation 3 53
[11] Guo F K 1999 Acta Phys. Sin. 19 507 (in Chinese)
[12] Guo F K 2000 Acta Math. Appl. Sin. 23 181
[13] Zhang Y F 2003 Phys. Lett. A 317 280
[14] Hu X B 1994 J. Phys. A: Math. Gen. 27 2497
[15] Fan E G 2001 Physica A 301 105
[16] Ma W X and Xu X X 2004 Int. J. Theor. Phys. 43 219
[17] Yu F J and Li L 2009 Phys. Lett. A 373 1632
[18] Hu X B 1990 PhD Dissertation (Beijing: Computing Center of Chinese Academy of Sciences) (in Chinese)
[19] Palit S and Roy Chowdhury A 1994 J. Phys. A: Math. Gen. 27 311
[20] Hu X B 1997 J. Phys. A: Math. Gen. 30 619
[21] Ma W X, He J S and Qin Z Y 2008 J. Math. Phys. 49 2488
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 040202
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 040202
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 040202
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 040202
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 040202
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 040202
[7] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 040202
[8] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 040202
[9] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 040202
[10] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 040202
[11] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 040202
[12] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 040202
[13] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 040202
[14] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 040202
[15] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 040202
Viewed
Full text


Abstract