Chin. Phys. Lett.  2010, Vol. 27 Issue (4): 040301    DOI: 10.1088/0256-307X/27/4/040301
GENERAL |
Solutions to the Modified Pöschl-Teller Potential in D-Dimensions
D. Agboola
Department of Pure and Applied Mathematics, Ladoke AkintolaUniversity of Technology, Oyo State, P.M.B. 4000, Nigeria
Cite this article:   
D. Agboola 2010 Chin. Phys. Lett. 27 040301
Download: PDF(332KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An approximate solution of the D-dimensional Schrödinger equation with the modified Pöschl-Teller potential is obtained with an approximation of the centrifugal term. Solution to the corresponding hyper-radial equation is given using the conventional Nikiforov-Uvarov method. The normalization constants for the Pöschl-Teller potential are also computed. The expectation values of -2> and are also obtained using the Feynman-Hellmann theorem.

Keywords: 03.65.-w      03.65.Fd      03.65.Ge     
Received: 21 October 2009      Published: 27 March 2010
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Fd (Algebraic methods)  
  03.65.Ge (Solutions of wave equations: bound states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/4/040301       OR      https://cpl.iphy.ac.cn/Y2010/V27/I4/040301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
D. Agboola
[1] Simsek M and Yalcin Z 1994 J. Math. Chem. 16 211
[2] Aktas M et al 2004 J. Mol. Struct. Theochem. 710 223
[3] Diaz J I et al 1999 J. Phys. A: Math. Gen. 32 8447
[4] Landau L D and Lifshitz E M 1965 Quantum Mechanics 3edn (Oxford: Pergamon) p 73
[5] Pöschl G and Teller E 1933 Z. Physik 83 143
[6] Barut A O et al 1987 J. Phys. A: Math. Gen. 20 4038
[7] Barut A O et al 1987 J. Phys. A: Math. Gen. 20 4075
[8] Koc R and Koca M arXiv: math-ph 0505004
[9] da Rocha R and de Oliveira E C 2005 Rev. Mex. Fis. 51 1
[10] Yesiltas O et al 2003 Phys. Scr. 67 472
[11] Oyewumi K J et al 2008 Int. J. Theor. Phys. 47 1039
[12] Agboola D 2009 Phys. Scr. 80 065304
[13] Al-Jaber S 1998 Int. J. Theor. Phys. 37 1289
[14] Bateman D S et al 1992 Am. J. Phys. 60 833
[15] Mavromatis H A 1997 Rep. Math. Phys. 40 17
[16] Paz G 2001 Eur. J. Phys. 22 337
[17] Yanez R J et al 1994 Phys. Rev. A 50 3065
[18] Zeng G J et al 1997 J. Phys. A: Math. Gen. 30 1775
[19] Saad N 2007 Phys. Scr. 76 623
[20] Schrödinger E 1940 Proc. R. Irish Acad. A 46 183
[21] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Bassel: Birkhauser)
[22] Andrews L C 1998 Special Functions of Mathematics for Engineers 2nd edn (Oxford: Oxford Science Publication)
[23] Hellmann G 1937 Einführung in die Quantenchemie} (Vienna: Denticke)
[24] Feynman R P 1939 Phys. Rev. 56 340}
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 040301
[2] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 040301
[3] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 040301
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 040301
[5] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 040301
[6] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 040301
[7] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 040301
[8] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 040301
[9] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 040301
[10] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 040301
[11] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 040301
[12] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 040301
[13] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 040301
[14] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 040301
[15] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 040301
Viewed
Full text


Abstract