CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Effect of Interface Nanotexture on Light Extraction of InGaN-Based Green Light Emitting Diodes |
PAN Yao-Bo1,2, HAO Mao-Sheng3, QI Sheng-Li1, FANG Hao1, ZHANG Guo-Yi1 |
1School of Physics and State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Peking University, Beijing 100871 2Epilight Technology Co., Ltd., Shanghai 201210 3Technology Center for IRICO Group Corporation, Beijing 100085 |
|
Cite this article: |
PAN Yao-Bo, HAO Mao-Sheng, QI Sheng-Li et al 2010 Chin. Phys. Lett. 27 038503 |
|
|
Abstract We report the enhancement of the light extraction of InGaN-based green light emitting diodes (LEDs) via the interface nanotexturing. The texture consists of high-density nanocraters on the surface of a sapphire substrate with an in situ etching. The width of nanocraters is about 0.5 µm and the depth is around 0.1 µm. It is demonstrated that the LEDs with interface texture exhibit about a 27% improvement in luminance intensity, compared with standard LEDs. High power InGaN-based green LEDs are obtained by using the interface nanotexture. An optical ray-tracing simulation is performed to investigate the effect of interface nanotexture on light extraction.
|
Keywords:
85.60.Jb
81.15.Gh
71.55.Eq
|
|
Received: 13 November 2009
Published: 09 March 2010
|
|
PACS: |
85.60.Jb
|
(Light-emitting devices)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
71.55.Eq
|
(III-V semiconductors)
|
|
|
|
|
[1] Wierer J J, Steigerwald D A, Krames M A, O'Shea J J, Ludowise M J, Christenson G, Shen Y C, Lowery C, Martin P S, Subramanya S, Gotz W, Gardner N F, Kern R S and Stockman S A 2001 Appl. Phys. Lett. 78 3379 [2] Detchprohm T, Zhu M, Zhao W, Wang Y, Li Y, Xia Y and Wetzel C 2009 Phys. Status Solidi C 6 S840 [3] Detchprohm T, Zhu M, Xia Y, Li Y, Zhao W, Senawiratne J and Wetzel C 2008 Phys. Status Solidi C 5 2207 [4] Huang C F, Liu T C, Lu Y C, Shiao W Y, Chen Y S, Wang J K, Lu C F and Yang C C 2008 J. Appl. Phys. 104 123106 [5] Fuhrmann D, Rossow U, Netzel C, Bremers H, Ade G, Hinze P and Hangleiter A 2006 Phys. Status Solidi C 6 1966 [6] Wetzel C, Salagaj T, Detchprohm T, Li P and Nelson J S 2004 Appl. Phys. Lett. 85 866 [7] Fang H, Kang X N, Hu C Y, Dai T, Chen Z Z, Qin Z X, Zhang B and Zhang G Y 2007 J. Cryst. Growth 298 703 [8] Fujii T, David A, Gao Y, Iza M, DenBaars S P, Hu E L, Weisbuch C and Nakamura S 2005 Phys. Status Solidi C 2 2836 [9] Bao K, Kang X N, Zhang B, Dai T, Sun Y J, Fu Q, Lian G J,Xiong G C, Zhang G Y and C Y 2008 Appl. Phys. Lett. 92 141104 [10] Horng R H, Wang W K, Huang S C, Huang S Y, Lin S H, Lin C F and Wuu D S 2007 J. Cryst. Growth 298 219 [11] Gao H Y, Yan F W, Zhang Y, Li J M, Zeng Y P and Wang G H 2008 J. Appl. Phys. 103 014314 [12] Pei X J, Guo L W, Wang X H, Wang Y, Jia H Q, Chen H and Zhou J M 2009 Chin. Phys. Lett. 26 028101 [13] David A, Meier C, Sharma R, Diana F S, DenBaars S P, Hu E, Nakamura S, Weisbuch C and Benisty H 2005 Appl. Phys. Lett. 87 101107 [14] Kim J Y, Kwon M K, Lee K S, Park S J, Kim S H and Lee K D 2007 Appl. Phys. Lett. 91 181109 [15] Dai T, Zhang B, Kang X N,Bao K, Zhao W Z, Xu D S, Zhang G Y and Gan Z Z 2008 IEEE Photon. Technol. Lett. 20 1974 [16] Hao M, Ishikawa H and Egawa T 2004 Appl. Phys. Lett. 84 4041 [17] Kim H, Choi K K, Kim K K, Cho J, Lee S N, Park Y, Kwak J S and Seong T Y 2008 Opt. Lett. 33 1273 [18] http://www.lambdares.com/technical |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|