Chin. Phys. Lett.  2010, Vol. 27 Issue (3): 034601    DOI: 10.1088/0256-307X/27/3/034601
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Generalized Lorenz Equation Derived from Thermal Convection of Viscoelastic Fluids in a Loop
YANG Fan, ZHU Ke-Qin
Department of Engineering Mechanics, Tsinghua University, Beijing 100084
Cite this article:   
YANG Fan, ZHU Ke-Qin 2010 Chin. Phys. Lett. 27 034601
Download: PDF(1108KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new generalized Lorenz system is presented based on the thermal convection of Oldroyd-B fluids in a circular loop. Two non-dimensional parameters De1 (a measure of the fluid relaxation) and De2 (a measure of the fluid retardation) appear in the equation. Then we study this generalized Lorenz equation numerically and find that the values of De1 and De2 can greatly influence the behavior of the solution. The fluid relaxation De1 is found to precipitate the onset of periodic solution (limit cycle) in the system and impedes the onset of chaos while the fluid retardation (De2) tends to delay the onset of the periodic solution and precipitate the onset of chaos in the system.
Keywords: 46.35.+z      47.50.-d      47.52.+j     
Received: 10 October 2009      Published: 09 March 2010
PACS:  46.35.+z (Viscoelasticity, plasticity, viscoplasticity)  
  47.50.-d (Non-Newtonian fluid flows)  
  47.52.+j (Chaos in fluid dynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/3/034601       OR      https://cpl.iphy.ac.cn/Y2010/V27/I3/034601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Fan
ZHU Ke-Qin
[1] Lorenz E N 1963 J. Atmos. Sci. 20 130
[2] Saltzman B 1962 J. atmos. Sci. 19 329
[3] Tritton D J 1988 Physical Fluid Dynamics (Oxford: Clarendon)
[4] Burroughs E A et al 2005 J. Fluid Mech. 543 203
[5] Rodr\'{\iguez-Bernal A and Vleck E S V 1998 Intl J. Bifurcation Chaos 8 41
[6] Oldroyd J G 1950 Proc. R. Soc. London Ser. A 200 523
[7] Khayat R E 1994 J. Non-Newtonian Fluid Mech. 53 227
[8] Khayat R E 1995 J. Non-Newtonian Fluid Mech. 5 8 331
[9] Li Z and Khayat R E 2005 J. Fluid Mech. 529 221
[10] Bird R B, Armstrong R C and Hassager O 1987 Dynamics of Polymeric Liquids (New York: Wiley) vol 1
[11] Khayat R E 1997 Phys. Rev. Lett. 78 4918
[12] Al-Sawalha M M et al 2008 Chin. Phys. Lett. 25 1217
Related articles from Frontiers Journals
[1] M. Sajid, K. Mahmood, Z. Abbas. Axisymmetric Stagnation-Point Flow with a General Slip Boundary Condition over a Lubricated Surface[J]. Chin. Phys. Lett., 2012, 29(2): 034601
[2] T. Hayat, M. Mustafa**, S. Obaidat . Simultaneous Effects of MHD and Thermal Radiation on the Mixed Convection Stagnation-Point Flow of a Power-Law Fluid[J]. Chin. Phys. Lett., 2011, 28(7): 034601
[3] T. Hayat, Liaqat Ali. Khan, R. Ellahi**, S. Obaidat . Exact Solutions on MHD Flow Past an Accelerated Porous Plate in a Rotating Frame[J]. Chin. Phys. Lett., 2011, 28(5): 034601
[4] T. Hayat, **, F. M. Abbasi, Awatif A. Hendi . Heat Transfer Analysis for Peristaltic Mechanism in Variable Viscosity Fluid[J]. Chin. Phys. Lett., 2011, 28(4): 034601
[5] Tasawar Hayat, **, Najma Saleem, Awatif A. Hendi . A Mathematical Model for Studying the Slip Effect on Peristaltic Motion with Heat and Mass Transfer[J]. Chin. Phys. Lett., 2011, 28(3): 034601
[6] LI Hai-Yan**, HU Yun-An . Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(12): 034601
[7] M. Mossa Al-sawalha, M. S. M. Noorani . Adaptive Increasing-Order Synchronization and Anti-Synchronization of Chaotic Systems with Uncertain Parameters[J]. Chin. Phys. Lett., 2011, 28(11): 034601
[8] N. Ali**, M. Sajid, T. Javed, Z. Abbas . An Analysis of Peristaltic Flow of a Micropolar Fluid in a Curved Channel[J]. Chin. Phys. Lett., 2011, 28(1): 034601
[9] S. Nadeem, Naeem Faraz. Thin Film Flow of a Second Grade Fluid over a Stretching/Shrinking Sheet with Variable Temperature-Dependent Viscosity[J]. Chin. Phys. Lett., 2010, 27(3): 034601
[10] M. Sajid, N. Ali, T. Javed, Z. Abbas. Stretching a Curved Surface in a Viscous Fluid[J]. Chin. Phys. Lett., 2010, 27(2): 034601
[11] YANG Fan, ZHU Ke-Qin. Can We Obtain a Fractional Lorenz System from a Physical Problem?[J]. Chin. Phys. Lett., 2010, 27(12): 034601
[12] HOU Ri-Li, , PENG Jian-Xiang, JING Fu-Qian, ZHANG Jian-Hua, ZHOU Ping. Reshock Response of 2A12 Aluminum Alloy at High Pressures[J]. Chin. Phys. Lett., 2009, 26(9): 034601
[13] CHEN Xi, GAO Yong, YANG Yuan. A Novel Method for the Initial-Condition Estimation of a Tent Map[J]. Chin. Phys. Lett., 2009, 26(7): 034601
[14] HU Kai-Xin, ZHU Ke-Qin. Mechanical Analogies of Fractional Elements[J]. Chin. Phys. Lett., 2009, 26(10): 034601
[15] K. Fakhar, XU Zhen-Li, CHENG Yi. Hall Effects on Unsteady Magnetohydrodynamic Flow of a Third Grade Fluid[J]. Chin. Phys. Lett., 2007, 24(5): 034601
Viewed
Full text


Abstract