Chin. Phys. Lett.  2010, Vol. 27 Issue (3): 034501    DOI: 10.1088/0256-307X/27/3/034501
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
A Quasi-One-Dimensional Model for a Chain of Water Molecules on the Nanometer Scale
WU Ke-Fei1,2, WAN Rong-Zheng1, WANG Chun-Lei1,2, REN Xiu-Ping1,2, FANG Hai-Ping1,3
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, PO Box 800-204, Shanghai 201800 2Graduate School of the Chinese Academy of Sciences, Beijing 100049 3Theoretical Physics Center for Science Facilities (TPCSF), Chinese Academy of Sciences, Beijing 100049
Cite this article:   
WU Ke-Fei, WAN Rong-Zheng, WANG Chun-Lei et al  2010 Chin. Phys. Lett. 27 034501
Download: PDF(380KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Water confined into the interior channels of narrow carbon nanotubes or transmembrane proteins can form collectively oriented molecular chains held together by tight hydrogen bonds. We develop a quasi-one-dimensional model for a chain of water molecules which interact with each other via the Coulomb and power-like repulsive interactions. We explore the equilibrium property of the water chain and derive an exact analytical expression for the total interaction energy of the water chain, denoted by W(0)int. It is found that W(0)int is minimal when the distance between the two neighboring water molecules in a hydrogen-bonded chain is equal to 0.265 nm. The model is expected to be useful for studying analytically the properties of single-file water molecules inside water channels, such as the concerted motion of water molecules.
Keywords: 45.05.+x      87.15.Ad     
Received: 09 October 2009      Published: 09 March 2010
PACS:  45.05.+x (General theory of classical mechanics of discrete systems)  
  87.15.ad (Analytical theories)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/3/034501       OR      https://cpl.iphy.ac.cn/Y2010/V27/I3/034501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Ke-Fei
WAN Rong-Zheng
WANG Chun-Lei
REN Xiu-Ping
FANG Hai-Ping
[1] Rasaiah J C, Garde S and Hummer G 2008 Annu. Rev. Phys. Chem. 59 713
[2] de Groot B L and Grubm\"uller H 2001 Science 294 2353
[3] Tajkhorshid E et al 2002 Science 296 525
[4] Zhu F Q and Schulten K 2003 Biophys. J. 85 236
[5] Zhu F Q, Tajkhorshid E et al 2004 Biophys. J. 86 50
[6] Jensen M {\O et al 2002 Proc. Natl. Acad. Sci. USA 99 6731
[7] Akeson M and Deamer D W 1991 Biophys. J. 60 101
[8] Pom\`es R and Roux B 1996 Biophys. J. 71 19
[9] Jiang Y X et al 2002 Nature 417 515
[10] Hummer G, Rasaiah J C et al 2001 Nature 414 188
[11] Berezhkovskii A et al 2002 Phys. Rev. Lett. 89 064503
[12] Zhu F Q, Tajkhorshid E et al 2002 Biophys. J. 83 154
[13] Wan R Z et al 2005 J. Am. Chem. Soc. 127 7166
[14] Li J Y et al 2007 Proc. Natl. Acad. Sci. USA 104 3687
[15] Gong X J et al 2007 Nature Nanotechnol. 2 709
[16] Li J Y et al 2007 Chin. Phys. Lett. 24 2710
[17] Lu H J et al 2008 Chin. Phys. Lett. 25 1145
[18] Zeng L et al 2008 Chin. Phys. Lett. 25 1486
[19] Vaitheeswaran S et al 2004 J. Chem. Phys. 121 7955
[20] K\"ofinger J, Hummer G and Dellago C 2008 Proc. Natl. Acad. Sci. USA 105 13218
[21] Tu Y S et al 2009 Proc. Natl. Acad. Sci. USA 106 18120
[22] Denisov S I and Denisova E S 2003 Phys. Rev. B 68 064301
Related articles from Frontiers Journals
[1] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 034501
[2] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 034501
[3] CAI Hui, MIAO Guo-Qing. Cluster Model for Wave-Like Motions of a 2D Vertically Vibrated Granular System[J]. Chin. Phys. Lett., 2010, 27(12): 034501
[4] DING Hui, LUO Liao-Fu. Kinetic Model of the Lysogeny/Lysis Switch of Phage λ[J]. Chin. Phys. Lett., 2009, 26(9): 034501
[5] FANG Jian-Hui, ZHANG Ming-Jiang, LU Kai. A New Type of Conserved Quantity of Mei Symmetry for Holonomic Mechanical System[J]. Chin. Phys. Lett., 2009, 26(11): 034501
[6] ZHANG Ling-Yun, WANG Peng-Ye. Electric Field-Induced Fluid Velocity Field Distribution in DNA Solution[J]. Chin. Phys. Lett., 2008, 25(10): 034501
[7] WANG Shao-Feng. From Discreteness to Continuity: Dislocation Equation for Two-Dimensional Triangular Lattice[J]. Chin. Phys. Lett., 2007, 24(1): 034501
[8] LIANG Bin, ZHU Zhe-Min, CHENG Jian-Chun. Acoustic Localization in Weakly Compressible Elastic Media Permeated with Air Bubbles[J]. Chin. Phys. Lett., 2006, 23(4): 034501
Viewed
Full text


Abstract