Chin. Phys. Lett.  2010, Vol. 27 Issue (3): 030201    DOI: 10.1088/0256-307X/27/3/030201
GENERAL |
Modulational Instability and Variable Separation Solution for a Generalized (2+1)-Dimensional Hirota Equation
LIANG Zu-Feng1, TANG Xiao-Yan2
1Department of Physics, Hangzhou Normal University, Hangzhou 310036 2Department of Physics, Shanghai Jiao Tong University, Shanghai 200240
Cite this article:   
LIANG Zu-Feng, TANG Xiao-Yan 2010 Chin. Phys. Lett. 27 030201
Download: PDF(535KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract It is demonstrated by the linear modulational instability analysis that a generalized (2+1)-dimensional Hirota equation is modulationally stable. Then, a Bäcklund transformation (BT) is obtained by means of the truncated Painlevé approach. Using the BT, the model is transformed to a system of equations, which finally leads to a special variable separation solution with arbitrary functions.
Keywords: 02.30.Jr      02.30.IK      05.45.Yv     
Received: 13 October 2009      Published: 09 March 2010
PACS:  02.30.Jr (Partial differential equations)  
  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/3/030201       OR      https://cpl.iphy.ac.cn/Y2010/V27/I3/030201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIANG Zu-Feng
TANG Xiao-Yan
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 030201
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 030201
[3] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 030201
[4] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 030201
[5] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 030201
[6] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 030201
[7] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 030201
[8] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 030201
[9] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 030201
[10] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 030201
[11] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 030201
[12] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 030201
[13] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 030201
[14] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 030201
[15] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 030201
Viewed
Full text


Abstract