Chin. Phys. Lett.  2010, Vol. 27 Issue (3): 030202    DOI: 10.1088/0256-307X/27/3/030202
GENERAL |
Integrable Curve Motions in n-Dimensional Centro-Affine Geometries
LI Yan-Yan
Institute of Mathematics and Information Science, Xianyang Normal University, Xianyang 712000
Cite this article:   
LI Yan-Yan 2010 Chin. Phys. Lett. 27 030202
Download: PDF(292KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Motions of curves in n-dimensional (n ≥ 4) centro-affine geometries are studied. It is shown that the 1+1-dimensional KdV equations and their hierarchy satisfied by the curvatures of curves under inextensible motions arise from such motions.
Keywords: 02.30.Ik      02.40.Hw      05.45.Yv     
Received: 05 November 2009      Published: 09 March 2010
PACS:  02.30.Ik (Integrable systems)  
  02.40.Hw (Classical differential geometry)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/3/030202       OR      https://cpl.iphy.ac.cn/Y2010/V27/I3/030202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Yan-Yan
[1] Hasimoto H 1972 J. Fluid Mech. 51 477
[2] Lamb G L 1977 J. Math. Phys. 18 1654
[3] Nakayama K, Segur H and Wadati M 1992 Phys. Rev. Lett. 69 2603
[4] Beffa G M 1999 Bull. Soc. Math. France 127 363
[5] Chou K S and Qu C Z 2002 Physica D 162 9
[6] Sanders J and Wang J P 2003 Moscow Math. J. 3 1369
[7] Goldstein R E and Petrich D M 1991 Phys. Rev. Lett. 67 3203
[8] Nakayama K 1998 J. Phys. Soc. Jpn. 67 3031
[9] Chou K S and Qu C Z 2001 J. Phys. Soc. Jpn. 70 1912
[10] Chou K S and Qu C Z 2003 J. Nonlin. Sci. 13 487
[11] Chou K S and Qu C Z 2002 Chaos, Solitons and Fractals 14 29
[12] Li Y Y and Qu C Z 2008 Chin. Phys. Lett. 25 1931
[13] Qu C Z and Li Y Y 2008 Commun. Theor. Phys. 50 841
[14] Yang K Q 1995 Chin. Phys. Lett. 12 65
[15] Dai Z D, Liu Z J and Li D L 2008 Chin. Phys. Lett. 25 1531
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 030202
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 030202
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 030202
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 030202
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 030202
[6] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 030202
[7] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 030202
[8] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 030202
[9] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 030202
[10] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 030202
[11] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 030202
[12] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 030202
[13] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 030202
[14] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 030202
[15] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 030202
Viewed
Full text


Abstract