Chin. Phys. Lett.  2010, Vol. 27 Issue (2): 028701    DOI: 10.1088/0256-307X/27/2/028701
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Effects of CRAC Channel on Spatiotemporal Ca2+ Patterns in T Cells
LI Cong-Xin, CHEN Xiao-Fang, WANG Peng-Ye, WANG Wei-Chi
Laboratory of Soft Matter Physics, Beijing National Laboratory for CondensedMatter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
LI Cong-Xin, CHEN Xiao-Fang, WANG Peng-Ye et al  2010 Chin. Phys. Lett. 27 028701
Download: PDF(714KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A reaction-diffusion model is built to investigate the temporal and spatial patterns of cytoplasmic Ca2+ dynamics under the effects of Ca2+-release activated Ca2+ (CRAC) channels in T cells. Simulation results show a strong dependence of the modulation mode of Ca2+ oscillation and dynamic patterns of Ca2+ wave on the influx rate through the CRAC channel (ksoc). When ksoc is small, cytoplasmic Ca2+ is modulated as a frequency-modulation (FM) signal, whereas it shows an amplitude modulation (AM) mode after ksoc passes through a critical value. The heterogeneity in spatial Ca2+ distribution is mostly arising from the influx through CRAC channels in both FM and AM modes. During each Ca2+ spike, a more sustained cytoplasmic Ca2+ gradient is maintained in the AM mode rather than in the FM mode.
Keywords: 87.16.Xa      87.16.dj      87.16.Vy      87.16.A-     
Received: 23 October 2009      Published: 08 February 2010
PACS:  87.16.Xa (Signal transduction and intracellular signaling)  
  87.16.dj (Dynamics and fluctuations)  
  87.16.Vy (Ion channels)  
  87.16.A- (Theory, modeling, and simulations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/2/028701       OR      https://cpl.iphy.ac.cn/Y2010/V27/I2/028701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Cong-Xin
CHEN Xiao-Fang
WANG Peng-Ye
WANG Wei-Chi
[1] Krebs J and Michalak M 2007 Calcium: A Matter of Life or Death (Amsterdam: Elsevier)
[2] Lewis R S 2001 Annu. Rev. Immunol. 19 497
[3] Bezprozvanny I et al 1991 Nature 351 751
[4] De Young G W and Keizer J 1992 Proc. Natl. Acad. Sci. USA 89 9895
[5] Li Y X and Rinzel J 1994 J. Theor. Biol. 166 461
[6] Mak D O et al 1998 Proc. Natl. Acad. Sci. USA 95 15821
[7] Shi X M and Liu Z R 2005 Chin. Phys. Lett. 22 3206
[8] Luo M Y et al 2009 Chin. Phys. Lett. 26 017102
[9] Lewis R S 2007 Nature 446 284
[10] Liou J et al 2005 Curr. Biol. 15 1235
[11] Zhang S L et al 2005 Nature 437 902
[12] Vig M et al 2006 Curr. Biol. 16 2073
[13] Luik R M et al 2008 Nature 454 538
[14] Ji W et al 2008 Proc. Natl. Acad. Sci. U S A 105 13668
[15] Chen X F et al 2008 Biophys. Chem. 136 87
[16] Dupont G 1998 Am. J. Physiol. 275 C317
[17] Jafri M S and Keizer J 1994 Proc. Natl. Acad. Sci. USA 91 9485
[18] Fall C P et al 2002 Computational Cell Biology (New York: Springer)
Related articles from Frontiers Journals
[1] SHEN Zai-Yi, HE Ying. A Lattice Boltzmann Method for Simulating the Separation of Red Blood Cells at Microvascular Bifurcations[J]. Chin. Phys. Lett., 2012, 29(2): 028701
[2] SONG Yan-Li . Frequency Effect of Harmonic Noise on the FitzHugh–Nagumo Neuron Model[J]. Chin. Phys. Lett., 2011, 28(12): 028701
[3] BAI Yong-Qiang, ZHU Xing,. Numerical Simulations of Calcium Ions Spiral Wave in Single Cardiac Myocyte[J]. Chin. Phys. Lett., 2010, 27(4): 028701
[4] SHI Xiao-Min, LIU Zeng-Rong. An Intracellular Calcium Oscillations Model Including Mitochondrial Calcium Cycling[J]. Chin. Phys. Lett., 2005, 22(12): 028701
[5] YING Yang-Jun, LI Wei-Hua. An Intracellular Calcium Oscillation Model and its Property [J]. Chin. Phys. Lett., 2003, 20(7): 028701
[6] YING Yang-Jun, HUANG Zu-Qia. Effects of Time-Delay on Intracellular Ca2+ Concentration Oscillations[J]. Chin. Phys. Lett., 2001, 18(5): 028701
Viewed
Full text


Abstract