Chin. Phys. Lett.  2010, Vol. 27 Issue (2): 028702    DOI: 10.1088/0256-307X/27/2/028702
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Emergent Travelling Pattern in a Spatial Predator-Prey System
LIU Pan-Ping
Department of Mathematics, North University of China, Taiyuan 030051
Cite this article:   
LIU Pan-Ping 2010 Chin. Phys. Lett. 27 028702
Download: PDF(308KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A predator-prey model taking into account both diffusion and migration is considered and a mathematical analysis of the spatial pattern is presented. The numerical simulations show that the travelling pattern can emerge when migration is added. The obtained results may account for the complexity of ecosystems.
Keywords: 87.23.Cc      82.40.Ck      05.45.Pq     
Received: 02 April 2009      Published: 08 February 2010
PACS:  87.23.Cc (Population dynamics and ecological pattern formation)  
  82.40.Ck (Pattern formation in reactions with diffusion, flow and heat transfer)  
  05.45.Pq (Numerical simulations of chaotic systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/2/028702       OR      https://cpl.iphy.ac.cn/Y2010/V27/I2/028702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Pan-Ping
[1] Blasius B, Tonjes R 2007 Analysis and Control of Complex Nonlinear Processes in Physics (Singapore: World Scientific)
[2] Fraser D F and Gilliam J F 1992 Ecology 73 959
[3] Garvie M R 2007 Bull. Math. Biol. 69 931
[4] Gurney W S C, Veitch A R, Cruickshank I, Mcgeachin G 1998 Ecology 79 2516
[5] Petrovskii S and Li B L 2003 Math. Biosci. 186 79
[6] Andresn P, Bache M, Mosekilde E, Dewel G and Borckmanns P 1999 Phys. Rev. E 60 297
[7] Murray J D 1993 Mathematical Biology 2nd edn (Berlin: Springer) vol 19
[8] Kuznetsov S P, Mosekilde E, Dewel G and Borckmans P 1997 J. Chem. Phys. 106 7609
[9] Rovinsky A B and Menzinger M 1992 Phys. Rev. Lett. 69 1193
[10] Wilson W, Abrams P 2005 Am. Nat. 165 193
[11] Sherratt J A 2005 J. Math. Biol. 51 183
[12] Segel L and Jackson J 1972 J. Theor. Biol. 37 545
[13] Morozov A, Petrovskii S and Li B L 2006 J. Theor. Biol. 238 18
[14] Medvinsky A, Petrovskii S, Tikhonova I, Malchow H and Li B L 2002 SIAM Rev. 44 311
[15] MacArthur R 1958 Ecology 39 599
Related articles from Frontiers Journals
[1] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 028702
[2] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 028702
[3] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 028702
[4] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 028702
[5] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 028702
[6] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 028702
[7] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 028702
[8] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 028702
[9] LI Qun-Hong**, CHEN Yu-Ming, QIN Zhi-Ying . Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator[J]. Chin. Phys. Lett., 2011, 28(3): 028702
[10] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 028702
[11] LI Guang-Zhao, CHEN Yong-Qi, TANG Guo-Ning**, LIU Jun-Xian . Spiral Wave Dynamics in a Response System Subjected to a Spiral Wave Forcing[J]. Chin. Phys. Lett., 2011, 28(2): 028702
[12] FENG Cun-Fang**, WANG Ying-Hai . Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach[J]. Chin. Phys. Lett., 2011, 28(12): 028702
[13] JIANG Guo-Hui, ZHANG Yan-Hui**, BIAN Hong-Tao, XU Xue-You . Fractal Analysis of Transport Properties in a Sinai Billiard[J]. Chin. Phys. Lett., 2011, 28(12): 028702
[14] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 028702
[15] Eduardo L. Brugnago**, Paulo C. Rech. Chaos Suppression in a Sine Square Map through Nonlinear Coupling[J]. Chin. Phys. Lett., 2011, 28(11): 028702
Viewed
Full text


Abstract