Chin. Phys. Lett.  2010, Vol. 27 Issue (2): 020301    DOI: 10.1088/0256-307X/27/2/020301
GENERAL |
Realizing the Underlying Quantum Dynamical Algebra SU(2) in Morse Potential
WANG Xue-Hong, LIU Yu-Bin
Department of Physics, Nankai University, Tianjin 300071
Cite this article:   
WANG Xue-Hong, LIU Yu-Bin 2010 Chin. Phys. Lett. 27 020301
Download: PDF(312KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We establish an underlying quantum dynamical algebra SU(2) for a one-dimensional Morse potential.

Keywords: 03.65.-w      03.65.Fd      03.65.Ge     
Received: 01 January 1900      Published: 08 February 2010
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Fd (Algebraic methods)  
  03.65.Ge (Solutions of wave equations: bound states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/2/020301       OR      https://cpl.iphy.ac.cn/Y2010/V27/I2/020301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Xue-Hong
LIU Yu-Bin
[1] De Lange O L and Raab R E 1991 Operator Methods in Quantum Mechanics (Oxford: Clarendon)
[2] Morse P M 1929 Phys. Rev. 34 57
[3] Rosen N and Morse P M 1932 Phys. Rev. 42 210
[4] P\"{oschl G and Teller E 1933 Zeitschrift f\"{ur Physik 83 143
[5] Natanzon G A 1979 Teor. Mat. Fiz. 38 146
[6] Kamran N and Olver P J 1990 J. Math. Anal. Appl. 145 342
[7] Spiridonov V 1992 Phys. Rev. Lett. 69 398
[8] Infeld L and Hull T E 1951 Rev. Mod. Phys. 23 21
[9] Delbecq C and Quesne C 1993 J. Phys. A 26 L127
[10] Hu M G and Chen J L 2007 Inter. J. Theor. Phys. 46 2119
[11] Chen J L, Zhang H B, Wang X H, Jing H and Zhao X G 2000 Inter. J. Theor. Phys. 39 2043
[12] Chen J L, Liu Y and Ge M L 1998 J. Phys. A 31 6473
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 020301
[2] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 020301
[3] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 020301
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 020301
[5] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 020301
[6] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 020301
[7] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 020301
[8] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 020301
[9] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 020301
[10] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 020301
[11] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 020301
[12] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 020301
[13] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 020301
[14] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 020301
[15] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 020301
Viewed
Full text


Abstract