Chin. Phys. Lett.  2010, Vol. 27 Issue (2): 020202    DOI: 10.1088/0256-307X/27/2/020202
GENERAL |
Lie Point Symmetries and Exact Solutions of the Coupled Volterra System
LIU Ping1, LOU Sen-Yue2,3
1Department of Electronic Engineering, University of Electronic Science and Technology of China Zhongshan Institute, Zhongshan 5284022Department of Physics, Shanghai Jiao Tong University, Shanghai 2002403Faculty of Science, Ningbo University, Ningbo 315211
Cite this article:   
LIU Ping, LOU Sen-Yue 2010 Chin. Phys. Lett. 27 020202
Download: PDF(612KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The coupled Volterra system, an integrable discrete form of a coupled Korteweg-de Vries (KdV) system applied widely in fluids, Bose-Einstein condensation and atmospheric dynamics, is studied with the help of the Lie point symmetries. Two types of delayed differential reduction systems are derived from the coupled Volterra system by means of the symmetry reduction approach and symbolic computation. Cnoidal wave and solitary wave solutions for a delayed differential reduction system and the coupled Volterra system are proposed, respectively.
Keywords: 02.30.Ik      05.45.Yv      02.20.Sv      05.50.+q     
Received: 09 November 2009      Published: 08 February 2010
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
  02.20.Sv (Lie algebras of Lie groups)  
  05.50.+q (Lattice theory and statistics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/2/020202       OR      https://cpl.iphy.ac.cn/Y2010/V27/I2/020202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Ping
LOU Sen-Yue
[1] Luo L and Fan E G 2009 Chin. Phys. Lett. 26 050203
[2] Liu P and Lou S Y 2008 Chin. Phys. Lett. 25 3311
[3] Liu P and Lou S Y Commun. Theor. Phys. 51 (2009) 27
[4] Xing Y Z et al 2009 Chin. Phys. Lett. 26 022501
[5] Shi J K et al 2009 Chin. Phys. Lett. 26 029401
[6] Liu P, Jia M and Lou S Y 2007 Phys. Scr. 76 674
[7] Liu P, Jia M and Lou S Y 2007 Chin. Phys. Lett. 24 2717
[8] Volterra V 1931 Th\'eorie math\'ematique de la lutte pour la vie (Paris: Gauthier-Villars)
[9] Svinin A K 2005 Phys. Lett. A 337 197
[10] Lou S Y, Tong B, Jia M and Li J H, A coupled Volterra system and its exact solutions, Preprint, 2009.
[11] Liu P 2008 Commun. Theor. Phys. 49 555
[12] Liu P, Li Z L and Yang C Y 2009 Chin. J. Phys. 47 411
[13] Levi D and Winternitz P 2006 { \it J. Phys. A 39 R1
[14] Ding W and Tang X Y 2004 Commun. Theor. Phys. 41 645
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 020202
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 020202
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 020202
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 020202
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 020202
[6] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 020202
[7] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 020202
[8] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 020202
[9] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 020202
[10] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 020202
[11] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 020202
[12] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 020202
[13] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 020202
[14] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 020202
[15] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 020202
Viewed
Full text


Abstract