Chin. Phys. Lett.  2010, Vol. 27 Issue (2): 020201    DOI: 10.1088/0256-307X/27/2/020201
GENERAL |
Exact Solutions for Two Equation Hierarchies
ZHAO Song-Lin1, ZHANG Da-Jun1, JI Jie2
1Department of Mathematics, Shanghai University, Shanghai 2004442College of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018
Cite this article:   
ZHAO Song-Lin, ZHANG Da-Jun, JI Jie 2010 Chin. Phys. Lett. 27 020201
Download: PDF(320KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Bilinear forms and double-Wronskian solutions are given for two hierarchies, the (2+1)-dimensional breaking Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy and the negative order AKNS hierarchy. According to some choices of the coefficient matrix in the Wronskian condition equation set, we obtain some kinds of solutions for these two hierarchies, such as solitons, Jordan block solutions, rational solutions, complexitons and mixed solutions.
Keywords: 02.30.Ik      05.45.Yv     
Received: 24 September 2009      Published: 08 February 2010
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/2/020201       OR      https://cpl.iphy.ac.cn/Y2010/V27/I2/020201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Song-Lin
ZHANG Da-Jun
JI Jie
[1] Calogero F et al 1976 Nuovo Cimento B 31 201
[2] Calogero F et al 1977 Nuovo Cimento B 39 54
[3] Zakharov V E 1980 Solitons ed Bullough R K and Caudrey P J (New York: Springer) p 270
[4] Bogoyovlenskii O I 1990 Russian Math. Surveys 45 1
[5] Bogoyovlenskii O I 1990 Math. USSR Izvestiya 35 245
[6] Bogoyovlenskii O I 1991 Math. USSR Izvestiya 36 129
[7] Bogoyovlenskii O I 1991 Math. USSR Izvestiya 37 475
[8] Bogoyovlenskii O I 1992 Math. USSR Izvestiya 38 439
[9] Bogoyovlenskii O I 1992 Math. USSR Izvestiya 39 959
[10] Li Y S et al 1993 J. Phys. A: Math. Gen. 26 7487
[11] Strachan I A B 1993 J. Math. Phys. 34 243
[12] Radha R et al 1994 Inverse Problems 10 L29
[13] Lou S Y 1995 J. Phys. A: Math. Gen. 28 5943
[14] Su T et al 2007 Chin. Phys. Lett. 24 305
[15] Kakei S et al 2002 Ann. Henri Poincare 3 817
[16] Yao Y Q et al 2008 Phys. Lett. A 372 2017
[17] Hao H H et al 2009 Commun. Theor. Phys. (accepted)
[18] Verosky J M 1991 J. Math. Phys. 32 1733
[19] Zhang D J, Ji J and Zhao S L 2009 Physica D 238 2361
[20] Ji J et al 2008 Commun. Theor. Phys. 50 1033
[21] Ji J et al 2009 Commun. Theor. Phys. 52 395
[22] Hu X B and Li Y 1989 Bilinearization of KdV, MKdV and Classical Boussinesq Hierarchies, Report on International Conference on Nonlinear Physics (Shanghai 24--30 April 1989)
[23] Liu Q M 1990 J. Phys. Soc. Jpn. 59 3520
[24] Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University)
[25] Nimmo J J C 1983 Phys. Lett. A 99 279
[26] Ma W X et al 2005 Trans. Am. Math. Soc. 357 1753
[27] Zhang D J and Hietarinta J 2005 Generalized Double-Wronskian Solutions to the Nonlinear Schr\"{oinger Equation (preprint)
[28] Zhang D J 2006 arXiv:nlin.SI/0603008
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 020201
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 020201
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 020201
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 020201
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 020201
[6] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 020201
[7] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 020201
[8] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 020201
[9] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 020201
[10] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 020201
[11] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 020201
[12] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 020201
[13] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 020201
[14] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 020201
[15] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 020201
Viewed
Full text


Abstract