CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Re-entrant-Groove-Assisted VLS Growth of Boron Carbide Five-Fold Twinned Nanowires |
FU Xin1,2, JIANG Jun1,2, LIU Chao1, YU Zhi-Yang1,2, Steffan LEA3, YUAN Jun2,3 |
1Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 1000842Beijing National Center for Electron Microscopy, Tsinghua University, Beijing 1000843Department of Physics, University of York, York YO10 5DD, U.K. |
|
Cite this article: |
FU Xin, JIANG Jun, LIU Chao et al 2009 Chin. Phys. Lett. 26 086110 |
|
|
Abstract We report a preferential growth of boron carbide nanowires with a five-fold twinned internal structure. The nanowires are found to grow catalytically via iron boron nanoparticles, but unusually the catalytic particle is in contact with the low-energy surfaces of boron carbide with V-shaped contact lines. We propose that this catalytical growth may be caused by preferential nucleation at the re-entrant grooves due to the twinning planes, followed by rapid spreading of atomic steps. This is consistent with the observed temperature dependence of the five-fold twinned nanowire growth.
|
Keywords:
61.46.Km
81.10.Aj
|
|
Received: 21 April 2009
Published: 30 July 2009
|
|
PACS: |
61.46.Km
|
(Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))
|
|
81.10.Aj
|
(Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
|
|
|
|
[1] Hofmeister H 2004 Encyclopedia of Nanoscience andNanotechnology(New York: American Scientific Publishers) vol 3 p431 [2] Wu B et al 2006 Nano Lett. 6 468 [3] Sun Y G et al 2003 Nano Lett. 3 955 [4] Jiang J et al 2006 Appl. Phys. Lett. 88 163107 [5] Fu X et al 2008 Appl. Phys. Lett. 93 043101 [6] Villars P, Prince A and Okamoto H 1995 Handbook ofTernary Alloy Phase Diagrams (Materials Park, OH: ASMInternational) p 5329 [7] Matkovich V I 1977 Boron and Refractory Borides(Berlin: Springer) [8] Wagner R S and Ellis W C 1964 Appl. Phys. Lett. 4 89 [9] Duan X and Lieber C M 2000 J. Am. Chem. Soc. 122 188 Ohlsson B J et al 2001 Appl. Phys. Lett. 79 3335 Krishnamachari U et al 2004 Appl. Phys. Lett. 852077 [10] Givargizov E I 1975 J. Cryst. Growth 31 20 Dubrovskii V G, Sibirev N V, Cirlin G E, Harmand J C andUstinov V M 2006 Phys. Rev. E 73 10 [11] Wagner R S 1960 Acta Metallurgica 8 57 [12] Hamilton D R and Seidensticker R G 1960 J. Appl.Phys. 31 1165 [13] Fujiwara K, Maeda K, Usami N and Nakajima K 2008 Phys. Rev. Lett. 101 055503 [14] Lofton C and Sigmund W 2005 Adv. Funct. Mater. 15 1197 [15] Boegels G, Pot T M, Meekes H, Bennema P and Bollen D 1997 Acta Crystallogr. A 53 84 [16] Pei Y T and De Hosson J T M 2001 Acta Mater. 49 561 [17] Wagner R S and Treuting R G 1961 J. Appl. Phys. 32 2490 [18] Tiller W A 1991 The Science of Crystallization:Microscopic Interfacial Phenomena (Cambridge: Cambridge University) [19] Werheit H 2000 Landolt-B\"{ornstein New Series III(Berlin: Springer) vol 41D [20] Sugimoto T and Shiba F 1999 J. Phys. Chem. B 103 3607 [21] Turnbull D 1950 Thermodynamics in PhysicalMetallurgy (Cleveland, Ohio: Amirican Soiciety for Metals) p 282 [22] Wu Y, Cui Y, Huynh L, Barrelet C J, Bell D C and Lieber CM 2004 Nano Lett. 4 433 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|