CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Controlled Evolution of Silicon Nanocone Arrays Induced by Ar+ Sputtering at Room Temperature |
LI Qin-Tao1,2, LI Zhi-Gang2, XIE Qiao-Ling1, GONG Jin-Long1, ZHU De-Zhang1 |
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 2018002Department of Physics, Taizhou Univeristy, Taizhou 317000 |
|
Cite this article: |
LI Qin-Tao, LI Zhi-Gang, XIE Qiao-Ling et al 2009 Chin. Phys. Lett. 26 056102 |
|
|
Abstract Controlled evolution of silicon nanocone arrays induced by Ar+ sputtering at room temperature, using the coating carbon as a mask, is demonstrated. The investigation of scanning electron microscopy indicates that the morphology of silicon nanostructures can be controlled by adjusting the thickness of the coating carbon film. Increasing the thickness of the coating carbon film from 50-60nm, 250-300nm and 750-800nm to 1500nm, the morphologies of silicon nanostructures are transformed from smooth surface ripple, coarse surface ripple and surface ripple with densely distributed nanocones to nanocone arrays with a high density of about 1×109-2×109 cm-2.
|
Keywords:
61.46.-w
78.70.-g
79.20.-m
81.16.Rf
81.15.Gh
|
|
Received: 16 September 2008
Published: 23 April 2009
|
|
PACS: |
61.46.-w
|
(Structure of nanoscale materials)
|
|
78.70.-g
|
(Interactions of particles and radiation with matter)
|
|
79.20.-m
|
(Impact phenomena (including electron spectra and sputtering))
|
|
81.16.Rf
|
(Micro- and nanoscale pattern formation)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
|
|
|
[1] Wellner A, Palmer R E et al 2002 J. Appl. Phys. 91 3294 [2] Jensen K L et al 2001 Solid-State Electron. 45831 [3] Wong W K et al 2002 Appl. Phys. Lett. 80 877 [4] Jensen K L et al 2002 Appl. Phys. Lett. 77 585 [5] Kichambare P D et al 2000 J. Vac. Sci. Technol. B 18 2722 [6] Wolter O, Bayer Th and Greschner J 1991 J. Vac. Sci.Technol. B 9 1353 [7] Vasile M J et al 1994 Appl. Phys. Lett. 64 575 [8] Alves M A R, Takeuti D F and Braga E S 2005 Microelectron. J. 36 51 [9] Seeger K and Palmer R E 1999 Appl. Phys. Lett. 74 1627 [10] Alves M A R, Porto L F, de Faria P H L and Braga E S 2004 Vacuum 72 485 [11] Chen W and Ahmed H 1993 Appl. Phys. Lett. 631116 [12] Chaisitsak S 2007 Mater. Sci. Eng. B 137 205 [13] Bai X D, Zhi C Y, Liu S, Wang E G and Wang Z L 2003 Solid State Commun. 125 185 [14] Chuang P K et al 2005 Diamond Relat. Mater. 14 1911 [15] Wang Q, Li J J et al 2005 Nanotechnology 162919 [16] Zhang X Y et al 2004 J. Vac. Sci. Technol. B 22 2853 [17] Zorba V et al 2004 Thin Solid Films 453/454492 [18] Georgiev D G et al 2004 Appl. Phys. Lett. 844881 [19] Wysocki G et al 2003 Appl. Phys. Lett. 82 692 [20] Tanemura M et al 2004 Nucl. Instrum. Methods B 215 137 [21] Li Q T et al 2008 Nucl. Instrum. Methods B 266 197 [22] Tuinstra F and Koening J L 1970 J. Chem. Phys. 53 1126 [23] Ferrari A C and Robertson J 2000 Phys. Rev. B 61 14095 [24] Sharif M M et al 2000 Carbon 38 127 [25] Habenicht S et al 1999 Phys. Rev. B 60 R2200 [26] Floro J A et al 1983 J. Vac. Sci. Technol. A 1 1398 [27] Toma A, de Mongeot F B et al 2005 Nucl. Instrum.Methods B 230 551 [28] Bradley R M and Harper J M 1988 J. Vac. Sci.Technol. A 6 2390 [29] Ghose D et al 1983 J. Appl. Phys. 54 1169 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|