|
State-to-State Transitions in a Hindmarsh-Rose Neuron System
HUANG Shou-Fang, ZHANG Ji-Qian, DING Shi-Jiang
Chin. Phys. Lett. 2009, 26 (5):
050502
.
DOI: 10.1088/0256-307X/26/5/050502
We investigate the dynamical response of the neuron system to a feeble external signal by using the Hindmarsh-Rose model, when the system is tuned below the first bifurcation point, which corresponds to the period-1 bursting state, and an external signal with a fixed period of about 170s is introduced to the system. It is found that to respond to the outside signal, the system changes from the period-1 state to a period-2 one with variation of the signal amplitude, indicating the occurrence of state-to-state transition (SST). Moreover, when a signal with different fixed periods is introduced, we can also find a similar transition between other states. Furthermore, the effect of the frequency of the signal on the transition is also discussed. These results may imply that SST plays a constructive role in information processing in neuron systems.
|
|
Stereodynamics of the He+D2+→HeD++D Reaction on the PALMIERI Surface
KONG Hao, LIU Xin-Guo, XU Wen-Wu, ZHANG Qing-Gang
Chin. Phys. Lett. 2009, 26 (5):
053102
.
DOI: 10.1088/0256-307X/26/5/053102
Using the quasi-classical trajectory method, the product rotational polarization of the ion-molecule reaction He+D2+ has been calculated at different collision energies on the PALMIERI potential energy surface [Palmieri et al. Mol. Phys. 98 (2000) 1835]. The distribution angle between k and j', P(θr), the distribution of the dihedral angle P(Φr), and the angular distribution of product rotational vectors in the form of polar plots in θr and Φr are calculated. In addition, four polarization-dependent differential cross sections are also presented in the center-of-mass frame, respectively. The results indicate that the rotational polarization of the product HeD+ presents different characters for different collision energies. These discrepancies may be ascribed to the different collision energies and constructions of the potential energy surface.
|
|
Effects of Different Zernike Terms on Optical Quality and Vision of Human Eyes
ZHAO Hao-Xin, XU Bing, LI Jing, DAI Yun, YU Xiang, ZHANG Yu-Dong, JIANG Wen-Han
Chin. Phys. Lett. 2009, 26 (5):
054205
.
DOI: 10.1088/0256-307X/26/5/054205
The visual quality of human eyes is much restricted by high-order aberrations as well as low-order aberrations (defocus and astigmatism), but each term of high-order aberrations contributes differently. The visual acuity and contrast of the image on the retina can be gained by inducing aberrations to each term of high orders. Based on an adaptive optics system, the visual acuity of four subjects is tested by inducing aberrations to each Zernike term after correcting all the aberrations of the subjects. Zernike terms near the center of the Zernike tree affect visual quality more than those near the edge both theoretically and experimentally, and 0.1-μm aberration of these terms can clearly degrade the optical quality and vision. The results suggest that correcting the terms near the center of Zernike tree can improve the visual quality effectively in practice.
|
|
SiO2 Waveguide Resonator Used in an Integrated Optical Gyroscope
YU Huai-Yong, ZHANG Chun-Xi, FENG Li-Shuang, ZHOU Zhen, HONG Ling-Fei
Chin. Phys. Lett. 2009, 26 (5):
054210
.
DOI: 10.1088/0256-307X/26/5/054210
An integrated optical waveguide resonator based on a SiO2 waveguide is proposed, fabricated and tested. The method of designing the resonator is also presented. The optimal splitting ratio of the coupler is gained by simulating the relationship between the splitting ratio of the key coupler in the resonator and the resonator's finesse with resonance depth. The calculated fundamental detection limit of this integrated optical waveguide resonator is 1.6°/h. Finally, a micro-optical gyroscope system based on the integrated waveguide resonator is built, and the measured resonator's finesse F is close to 70 under fluctuating temperature. To the best of our knowledge, the present F is the best result to date. For the coupler splitting rate the experimental results have fixed errors with the simulation results caused by fabrication processes which can be easily eliminated, implying that the method of design is effective and applicable.
|
|
Emissions of Photonic Crystal Waveguides with Discretely Modulated Surfaces
TANG Dong-Hua, CHEN Li-Xue, LIU Yan, SUN Xiu-Dong, DING Wei-Qiang
Chin. Phys. Lett. 2009, 26 (5):
054214
.
DOI: 10.1088/0256-307X/26/5/054214
Transmission properties of photonic crystal (PC) waveguides with discretely modulated exit surfaces are investigated numerically using the finite-difference time-domain (FDTD) method. Unlike the case of periodically modulated surfaces, where the transmission beam tends to be a single and directional beam, when the exit surfaces are modulated only at several discrete points, the emission power tends to split into multiple and directional beams. We explain this phenomenon using a multiple point source interference model. Based on these results, we propose a 1-to-Nbeam splitter, and numerically realized high efficiency coupling between a PC sub-wavelength waveguide and three traditional dielectric waveguides with a total efficiency larger than 92%. This simple, easy fabrication, and controllable mechanism may find more potential applications in integrated optical circuits.
|
|
Nonlinearity of InP-Doped Fibers
ZHANG Ru, CHEN Xi, WANG Jin, DUAN Yu-Wen
Chin. Phys. Lett. 2009, 26 (5):
054216
.
DOI: 10.1088/0256-307X/26/5/054216
By combining nano-technology with fiber technology, an optical fiber doped with semiconductor nano-particles as InP is fabricated by using the modified chemical vapor deposition (MCVD) method. Proved by experiment, the fiber has excellent waveguide characteristics, and the concentration of InP is approximately 0.1%. By using a scanning electron microscope, a stereo-scan photograph of the fiber is obtained, and based on the graph, presentations of the fiber under both magnetic and electronic fields are simulated, the effective core area Aeff ≈ 10μm2 is calculated, and so is the nonlinear index γ =10.53W-1/Km of the fiber. This research leads a new method of high nonlinearity fiber fabrication.
|
|
Investigation of an S-Band Tapered Magnetically Insulated Transmission Line Oscillator
LI Zhi-Qiang, ZHONG Hui-Huang, FAN Yu-Wei, SHU Ting, QIAN Bao-Liang, XU Liu-Rong, ZHAO Yan-Song
Chin. Phys. Lett. 2009, 26 (5):
055201
.
DOI: 10.1088/0256-307X/26/5/055201
We present an improved structure of the tapered magnetically insulated transmission line oscillator (MILO). Simulation results show that this structure can obtain more microwave power with higher efficiency. Studies indicate that the distance between the load support legs and the last vane can affect the operation characteristics of this device. In the experiments, we obtain microwave with peak power of 2GW, frequency of 2.63GHz, and mode TM01. The beam to microwave power efficiency is 11%.
|
|
Controlled Evolution of Silicon Nanocone Arrays Induced by Ar+ Sputtering at Room Temperature
LI Qin-Tao, LI Zhi-Gang, XIE Qiao-Ling, GONG Jin-Long, ZHU De-Zhang
Chin. Phys. Lett. 2009, 26 (5):
056102
.
DOI: 10.1088/0256-307X/26/5/056102
Controlled evolution of silicon nanocone arrays induced by Ar+ sputtering at room temperature, using the coating carbon as a mask, is demonstrated. The investigation of scanning electron microscopy indicates that the morphology of silicon nanostructures can be controlled by adjusting the thickness of the coating carbon film. Increasing the thickness of the coating carbon film from 50-60nm, 250-300nm and 750-800nm to 1500nm, the morphologies of silicon nanostructures are transformed from smooth surface ripple, coarse surface ripple and surface ripple with densely distributed nanocones to nanocone arrays with a high density of about 1×109-2×109 cm-2.
|
|
First-Principles Calculations of Elastic and Thermal Properties of Lanthanum Hexaboride
XU Guo-Liang, CHEN Jing-Dong, XIA Yao-Zheng, LIU Xue-Feng, LIU Yu-Fang, ZHANG Xian-Zhou
Chin. Phys. Lett. 2009, 26 (5):
056201
.
DOI: 10.1088/0256-307X/26/5/056201
The plane-wave pseudopotential method using the generalized gradient approximation within the framework of density functional theory is applied to anaylse the bulk modulus, thermal expansion coefficient and heat capacity of LaB6. The quasi-harmonic Debye model, using a set of total energy versus volume obtained with the plane-wave pseudopotential method, is applied to the study of the thermal properties and vibrational effects. We analyse the bulk modulus of LaB6 up to 1500K. The elastic properties calculations show that our system is mechanically stable. For the heat capacity and the thermal expansion, significant differences in properties are observed above 300K. The calculated zero pressure bulk modulus is in good agreement with the experimental data. Moreover, the Debye temperatures are determined from the non-equilibrium Gibbs functions and compared to available data.
|
|
Growth-Parameter Spaces and Optical Properties of Cubic Boron Nitride Films on Si(001)
FAN Ya-Ming, ZHANG Xing-Wang, YOU Jing-Bi, YING Jie, TAN Hai-Ren, CHEN Nuo-Fu
Chin. Phys. Lett. 2009, 26 (5):
056801
.
DOI: 10.1088/0256-307X/26/5/056801
Cubic boron nitride (c-BN) films were deposited on Si(001) substrates in an ion beam assisted deposition (IBAD) system under various conditions, and the growth parameter spaces and optical properties of c-BN films have been investigated systematically. The results indicate that suitable ion bombardment is necessary for the growth of c-BN films, and a well defined parameter space can be established by using the P/a-parameter. The refractive index of BN films keeps a constant of 1.8 for the c-BN content lower than 50%, while for c-BN films with higher cubic phase the refractive index increases with the c-BN content from 1.8 at χc=50% to 2.1 at χc=90%. Furthermore, the relationship between n and ρ for BN films can be described by the Anderson-Schreiber equation, and the overlap field parameter γ is determined to be 2.05.
|
|
Effect of Different Substrate Temperature on Phosphorus-Doped ZnO Thin Films Prepared by PLD on Sapphire Substrates
ZHAO Zi-Wen, HU Li-Zhong, ZHANG He-Qiu, SUN Jing-Chang, BIAN Ji-Ming, LIANG Hong-Wei, HUO Bing-Zhi, YU Dong-Qi, CHEN Xi, FU Qiang
Chin. Phys. Lett. 2009, 26 (5):
057305
.
DOI: 10.1088/0256-307X/26/5/057305
Phosphorus-doped ZnO (ZnO:P) thin films are deposited on a c-plane sapphire in oxygen at 350°C, 450°C, 550°C and 650°C, respectively, by pulsed laser deposition (PLD), then all the ZnO:P samples are annealed at 650°C in oxygen with a pressure of 1×105 Pa. X-ray diffraction measurements indicate that the crystalline quality of the ZnO:P thin films is improved with the increasing substrate temperature from 350°C to 550°C. With a further increase of the deposition temperature, the crystalline quality of the ZnO:P sample is degraded. The measurements of low-temperature photoluminescence spectra demonstrate that the samples deposited at the substrate temperatures of 350°C and 450°C show a strong acceptor-bound exciton (A0X) emission. The electrical properties of ZnO:P films strongly depend on the deposition temperature. The ZnO:P samples deposited at 350°C and 450°C exhibit p-type conductivity. The p-type ZnO:P film deposited at 450°C shows a resistivity of 1.846Ω12539;cm and a relatively high hole concentration of 5.100×1017 cm-3 at room temperature.
|
|
Influences of Bi2O3/V2O5 Additives on the Microstructure and Magnetic Properties of Lithium Ferrite
SU Hua, ZHANG Huai-Wu, TANG Xiao-Li, JING Yu-Lan, ZHONG Zhi-Yong
Chin. Phys. Lett. 2009, 26 (5):
057501
.
DOI: 10.1088/0256-307X/26/5/057501
Lithium ferrite materials with different concentrations of Bi2O3 and V2O5 additives are prepared by the conventional ceramic technique. The x-ray diffraction analysis proves that the additives do not affect the final crystal phase of the lithium ferrite in our testing range. Both Bi2O3 and V2O5 additives could promote densification and lower sintering temperature of the lithium ferrite. The average grain size first increases, and then gradually decreases with the Bi2O3 content. The maximal grain size appears with 0.25wt% Bi2O3. The average grain size first increases, and then is kept almost unchanged with the V2O5 content. The maximal average grain size of the samples with V2O5 additive is much smaller than that of the samples with Bi2O3 additive. Furthermore, the V2O5 additive more easily enters the crystal lattice of the lithium ferrite than the Bi2O3 additive. These characteristics evidently affect the magnetic properties, such as saturation flux density, ratio of remanence Br to saturation flux density Bs, and coercive force of the lithium ferrite. The mechanisms involved are discussed.
|
|
Enhanced Magnetoresistance of (La0.67Ca0.33MnO3) Composites Coated byZn0.95Co0.05O
ZHUANG Bin, XU Yan, LAI Heng, HUANG Zhi-Gao, CHEN Shui-Yuan, LIN Ying-Bin, LI Shang-Dong, LAI Fa-Chun
Chin. Phys. Lett. 2009, 26 (5):
057502
.
DOI: 10.1088/0256-307X/26/5/057502
La0.7Ca0.3MnO3:xZn0.95Co0.05O (x = 0.0, 0.05, 0.1, 0.15 mol) composites are prepared by a sol-gel process. X-ray diffraction and energy diffraction spectroscopy reveal that there is no evidence of a reaction between the La0.7Ca0.3MnO3(LCMO) and Zn0.95Co0.05O (ZCO). Magnetization M, Curie temperature TC and metal-insulator transition temperatures Tp are observed to decrease with increasing ZCO content. Compared with x = 0.0, a great enhancement in the magnetoresistance (MR) is observed at around TC for x = 0.05, 0.10, 0.15. Based on the tunneling MR and percolation models, this great change of MR is well explained.
|
|
Modeling and Computing Example for Effective Electromagnetic Parameters of Multiphase Composite Media
SONG Wei-Li, YUAN Jie, HOU Zhi-Ling, CAO Mao-Sheng
Chin. Phys. Lett. 2009, 26 (5):
057702
.
DOI: 10.1088/0256-307X/26/5/057702
A method using strong fluctuation theory (SFT) to compute the effective electromagnetic parameters of multiphase composite media, and common materials used to design radar-absorbing materials, is demonstrated. The effective electromagnetic parameters of ultrafine carbonyl-iron (DT-50) and fiber fabric, which are both multiphase composite media and represent coated and structured radar absorbing materials, respectively, are investigated, and the corresponding equations of electromagnetic parameters by using the SFT are attained. Moreover, we design a program to simplify the solutions, and the results are discussed.
|
|
An Anomalous Gain Mechanism in GaN Schottky Barrier Ultraviolet Photodetectors
ZHAO De-Gang, JIANG De-Sheng, LIU Zong-Shun, ZHU Jian-Jun, WANG Hui, ZHANG Shu-Ming, YANG Hui,
Chin. Phys. Lett. 2009, 26 (5):
058501
.
DOI: 10.1088/0256-307X/26/5/058501
The gain mechanism in GaN Schottky barrier ultraviolet photodetectors is investigated by focused light beam. When the incident light illuminates the central region of the Schottky contact electrode, the responsivity changes very little with the increase of reverse bias voltage. However, when the incident light illuminates the edge region of the electrode, the responsivity increases remarkably with the increase of reverse bias voltage, and the corresponding quantum efficiency could be even higher than 100%. It is proposed that the surface states near the edge of the electrode may lead to a reduction of effective Schottky barrier height and an enhancement of electron injection, resulting in the anomalous gain.
|
|
Theoretical Studies on Defects of Kaolinite in Clays
HE Man-Chao, FANG Zhi-Jie, ZHANG Ping
Chin. Phys. Lett. 2009, 26 (5):
059101
.
DOI: 10.1088/0256-307X/26/5/059101
Using the first-principles methods, we study the formation energetics and charge doping properties of the extrinsic substitutional defects in kaolinite. Especially, we choose Be, Mg, Ca, Fe, Cr, Mn, Cu, Zn as extrinsic defects to substitute for Al atoms. By systematically calculating the impurity formation energies and transition energy levels, we find that all group-II defects introduce the relative shallow transition energy levels in kaolinite. Among them, MgAl has the shallowest transition energy level at 0.08eV above the valence band maximum. The transition-elemental defects FeAl, CrAl, and MnAl are found to have relative low formation energies, suggesting their easy formation in kaolinite under natural surrounding conditions. Our calculations show that the defects CuAl and ZnAl have the high formation energies and deep transition energy levels, which exclude the possibility of their formation in natural kaolinite.
|
|
Bounce-averaged Pitch-angle Diffusion by Electromagnetic Ion Cyclotron Waves in Multi-ion Plasmas
XIAO Fu-Liang, TIAN Tian, CHEN Liang-Xu
Chin. Phys. Lett. 2009, 26 (5):
059402
.
DOI: 10.1088/0256-307X/26/5/059402
We present a study on the gyroresonant interaction between electromagnetic ion cyclotron waves and ring current particles in multi-ion (H+, He+, and O+) plasmas. We provide a first evaluation of the bounce-averaged pitch angle diffusion coefficient <Dαα> for three typical energies of 50, 100 and 150keV at L≈3.5, the heart of the symmetrical ring current. We show that in the H+-band and He+-band, <Dαα> can approach ~10-4s-1 for ion H+, and ~5× 10-5s-1 for ion He+; meanwhile, in the O+-band, <Dαα> can reach ~10-5s-1 for ions He+ and O+. The results above show that the EMIC wave can efficiently produce precipitation loss of energetic (~100keV) ions (H+, He+ and even O+), and such a wave tends to be a serious candidate responsible for the ring current decay.
|
79 articles
|