Chin. Phys. Lett.  2009, Vol. 26 Issue (3): 030401    DOI: 10.1088/0256-307X/26/3/030401
GENERAL |
Dirac Quasinormal Modes of a Schwarzschild Black Hole surrounded by Free Static Spherically Symmetric Quintessence
ZHANG Yu1,2,3, WANG Chun-Yan2, GUI Yuan-Xing2, WANG Fu-Jun2, YU Fei2
1Department of Applied Mathematics, Dalian University of Technology, Dalian 1160242School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 1160243Department of Physics, Bohai University, Jinzhou 121013
Cite this article:   
ZHANG Yu, WANG Chun-Yan, GUI Yuan-Xing et al  2009 Chin. Phys. Lett. 26 030401
Download: PDF(313KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We evaluate the quasinormal modes of massless Dirac perturbation in a Schwarzschild black hole surrounded by the free static spherically symmetric quintessence using the third-order Wentzel-Kramers-Brillouin (WKB) approximation. The result shows that the massless Dirac field damps more slowly due to the presence of quintessence. The real part of the quasinormal modes increases and the absolute value of the imaginary part increases when the state parameter wq increases. In other words, the massless Dirac field decays more rapidly for the larger wq. The peak value of potential barrier becomes higher as |k| increases and the location of peak moves along the right for fixed wq.
Keywords: 04.30.Nk      04.70.Bw      97.60.Lf     
Received: 17 November 2008      Published: 19 February 2009
PACS:  04.30.Nk (Wave propagation and interactions)  
  04.70.Bw (Classical black holes)  
  97.60.Lf (Black holes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/3/030401       OR      https://cpl.iphy.ac.cn/Y2009/V26/I3/030401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Yu
WANG Chun-Yan
GUI Yuan-Xing
WANG Fu-Jun
YU Fei
[1] Vishveshwara C V 1970 Nature 227 936
[2]Kokkotas K D and Schmidt B G 1999 Living Rev. Rel. 2 2
[3]Nollert H P 1999 Class. Quantum Grav. 16 R159
[4]Chandrasekhar S 1975 Proc. R. Soc. London A 343 289--298
[5]Cardoso V et al 2004 Phys. Rev. D 70 124032
[6]Konoplya R A 2005 Phys. Rev. D 71 024038
[7]Berti E and Cardoso V 2006 Phys. Rev. D 74104020
[8]Chen S B et al 2006 Class. Quantum Grav. 237581
[9]Konoplya R A et al 2006 Phys. Rev. D 73 124040
[10]L\'{opez-Ortega A 2006 Gen. Relativ. Gravit. 38 743
[11]Li X Z, Hao J G and Liu D J 2001 Phys. Lett. B 507 312
[12]Wang B et al 2002 Phys. Rev. D 65 084006
[13]Wang B et al 2004 Phys. Rev. D 70 064025
[14]Giammatteo M et al 2005 Class. Quantum Grav. 22 1803
[15]Konoplya R A et al 2006 Phys. Rev. D 73 124040
[16]L\'{opez-Ortega A 2006 Gen. Relativ. Gravit. 38 1747
[17]Cho H T 2003 Phys. Rev. D 68 024003
[18]Giammatteo M and Jing J L 2005 Phys. Rev. D 71024007
[19]Jing J L 2004 Phys. Rev. D 69 084009
[20]Jing J L and Pan Q Y 2005 Phys. Rev. D 71124011
[21]Kiselev V V 2003 Class. Quantum Grav. 20 1187
[22]Chen S B et al 2005 Class. Quantum Grav. 224651
[23]Liu M L et al 2009 Eur. Phys. J. C 59 107
[24]Zhang Y et al 2006 Class. Quantum Grav. 236141
[25]Zhang Y et al 2007 Gen. Relativ. Gravit. 391003
[26]Brill D R and Wheeler J A 1957 Rev. Mod. Phys. 29 465
[27]Schutz B F and Will C M 1985 Astrophys. J. 291 L33
[28]Iyer S and Will C M 1987 Phys. Rev. D 35 3621
[29]Konoplya R A 2003 Phys. Rev. D 68 024018
Related articles from Frontiers Journals
[1] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 030401
[2] ZHANG Bao-Cheng, CAI Qing-Yu, ZHAN Ming-Sheng. Entropy Conservation in the Transition of Schwarzschild-de Sitter Space to de Sitter Space through Tunneling[J]. Chin. Phys. Lett., 2012, 29(2): 030401
[3] M. Sharif**, G. Abbas. Phantom Energy Accretion by a Stringy Charged Black Hole[J]. Chin. Phys. Lett., 2012, 29(1): 030401
[4] LIU Yan, JING Ji-Liang**. Propagation and Evolution of a Scalar Field in Einstein–Power–Maxwell Spacetime[J]. Chin. Phys. Lett., 2012, 29(1): 030401
[5] M Sharif**, G Abbas . Phantom Accretion onto the Schwarzschild de-Sitter Black Hole[J]. Chin. Phys. Lett., 2011, 28(9): 030401
[6] Faiz-ur-Rahman, Salahuddin, M. Akbar** . Generalized Second Law of Thermodynamics in Wormhole Geometry with Logarithmic Correction[J]. Chin. Phys. Lett., 2011, 28(7): 030401
[7] ZHU Yin . Measurement of the Speed of Gravity[J]. Chin. Phys. Lett., 2011, 28(7): 030401
[8] HE Liang, HUANG Chang-Yin, WANG Ding-Xiong** . A Constraint of Black Hole Mass and the Inner Edge Radius of Relativistic Accretion Disc[J]. Chin. Phys. Lett., 2011, 28(3): 030401
[9] CAO Guang-Tao**, WANG Yong-Jiu . Interference Phase of Mass Neutrino in Schwarzschild de Sitter Field[J]. Chin. Phys. Lett., 2011, 28(2): 030401
[10] LIU Tong**, XUE Li . Gravitational Instability in Neutrino Dominated Accretion Disks[J]. Chin. Phys. Lett., 2011, 28(12): 030401
[11] YANG Xiao-Song, LIU San-Qiu, **, LI Xiao-Qing, . Modulational Instability for Gravitoelectromagnetic Perturbations with Longitudinal and Transverse Modes[J]. Chin. Phys. Lett., 2011, 28(10): 030401
[12] GUO Guang-Hai**, DING Xia . Area Spectra of Schwarzschild-Anti de Sitter Black Holes from Highly Real Quasinormal Modes[J]. Chin. Phys. Lett., 2011, 28(10): 030401
[13] PAN Qi-Yuan, JING Ji-Liang. Late-Time Evolution of the Phantom Scalar Perturbation in the Background of a Spherically Symmetric Static Black Hole[J]. Chin. Phys. Lett., 2010, 27(6): 030401
[14] LIU Liao. Cosmological Gravitational Wave in de Sitter Spacetime[J]. Chin. Phys. Lett., 2010, 27(2): 030401
[15] ZHAO Fan, HE Feng. Statistical Mechanical Entropy of a (4+n)-Dimensional Static Spherically Symmetric Black Hole[J]. Chin. Phys. Lett., 2010, 27(2): 030401
Viewed
Full text


Abstract