Chin. Phys. Lett.  2009, Vol. 26 Issue (3): 030202    DOI: 10.1088/0256-307X/26/3/030202
GENERAL |
N-Soliton Solutions of Non-Isospectral Derivative Nonlinear Schrödinger Equation
ZHAO Song-Lin, ZHANG Da-Jun, CHEN Deng-Yuan
Department of Mathematics, Shanghai University, Shanghai 200444
Cite this article:   
ZHAO Song-Lin, ZHANG Da-Jun, CHEN Deng-Yuan 2009 Chin. Phys. Lett. 26 030202
Download: PDF(386KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Bilinear forms of the non-isospectral derivative nonlinear Schrödinger equation are derived. The N-soliton solutions of this equation are obtained by Hirota's method.
Keywords: 02.30.Ik      02.30.Jr      05.45.Yv     
Received: 06 October 2008      Published: 19 February 2009
PACS:  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/3/030202       OR      https://cpl.iphy.ac.cn/Y2009/V26/I3/030202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Song-Lin
ZHANG Da-Jun
CHEN Deng-Yuan
[1] Chen H H and Liu C S 1976 Phys. Rev. Lett. 37693
[2] Hirota R and Satsuma J 1976 J. Phys. Soc. Jpn. 41 2141
[3] Calogero F and Degasperis A 1978 Commun. Math. Phys. 63 155
[4] Ma W X 1990 J. Phys. A: Math. Gen. 23 2707
[5] Ma W X 1992 J. Phys. A: Math. Gen. 25 5329
[6] Ma W X 1992 J. Math. Phys. 33 2464
[7] Ma W X and Fuchssteiner B 1999 J. Math. Phys. 40 2400
[8] Tamizhmani K M and Ma W X 2000 J. Phys. Soc. Jpn. 69 351
[9] Chen D Y and Zhang H W 1991 J. Phys. A: Gen. Math. 24 377
[10] Chen D Y and Zhang D J 1996 J. Math. Phys. 375524
[11] Burtsev S P, Zakharov V E and Mikhailov A V 1987 Theore. Math. Phys. 70 227
[12] Kaup D J and Newell A C 1978 J. Math. Phys. 19 798
[13] Chen H H, Lee Y C and Liu C S 1979 Phys. Scr. 20 490
[14] Kakei S, Sasa N and Satsuma J 1995 J. Phys. Soc.Jpn. 64 1519
[15] Kundu A 1987 Physica D 25 399
[16] Fan E G 2000 J. Phys. A: Math. Gen 33 6925
[17] Fan E G 2001 Comm. Theor. Phys. 35 651
[18] Zhai W and Chen D Y 2008 Commun. Theor. Phys. 49 1101
[19] Zhai W and Chen D Y 2008 Phys. Lett. A 3724217
[20] Gupta M R 1979 Phys. Lett. A 72 420
[21] Zhang D J and Chen D Y 2004 J. Phys. A: Gen. Math. 37 851
[22] Ning T K, Chen D Y and Zhang D J 2004 Chaos,Solitons and Fractals 21 395
[23] Deng S F and Qin Z Y 2006 Phys. Lett. A 357467
[24] Deng S F 2006 Chin. Phys. Lett. 23 1662
[25] Zhang D J 2006 Chin. Phys. Lett. 23 2349
[26] Hirota R 1971 Phys. Rev. Lett. 27 1192
[27] Freeman N C and Nimmo J J C 1983 Phys. Lett. A 95 1
[28] Hirota R 2004 The Direct Methods in Soliton Theory(Cambridge: Cambridge University Press)
[29] Chen D Y 2006 Introduction of Soliton Theory(Beijing: Science Press) (in Chinese)
[30] Fan E G and Zhang H Q 2000 J. Math. Phys. 412058
[31] Matveev V B 1992 Phys. Lett. A 166 209
[32] Deng S F and Chen D Y 2001 J. Phys. Soc. Jpn. 70 3174
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 030202
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 030202
[3] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 030202
[4] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 030202
[5] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 030202
[6] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 030202
[7] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 030202
[8] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 030202
[9] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 030202
[10] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 030202
[11] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 030202
[12] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 030202
[13] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 030202
[14] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 030202
[15] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 030202
Viewed
Full text


Abstract