Chin. Phys. Lett.  2009, Vol. 26 Issue (3): 030203    DOI: 10.1088/0256-307X/26/3/030203
GENERAL |
Lie Symmetry and Nonlinear Instability in Computation of KdV Solitons
ZHANG Hua-Yan, RAN Zheng
Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072
Cite this article:   
ZHANG Hua-Yan, RAN Zheng 2009 Chin. Phys. Lett. 26 030203
Download: PDF(218KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The soliton calculation method put forward by Zabusky and Kruskal has played an important role in the development of soliton theory, however numerous numerical results show that even though the parameters satisfy the linear stability condition, nonlinear instability will also occur. We notice an exception in the numerical calculation of soliton, gain the linear stability condition of the second order Leap-frog scheme constructed by Zabusky and Kruskal, and then draw the perturbed equation with the finite difference method. Also, we solve the symmetry group of the KdV equation with the knowledge of the invariance of Lie symmetry group and then discuss whether the perturbed equation and the conservation law keep the corresponding symmetry. The conservation law of KdV equation satisfies the scaling transformation, while the perturbed equation does not satisfy the Galilean invariance condition and the scaling invariance condition. It is demonstrated that the numerical simulation destroy some physical characteristics of the original KdV equation. The nonlinear instability in the calculation of solitons is related to the breaking of symmetry
Keywords: 02.70.Bf      47.35.Fg      47.20.Ky     
Received: 23 October 2008      Published: 19 February 2009
PACS:  02.70.Bf (Finite-difference methods)  
  47.35.Fg (Solitary waves)  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/3/030203       OR      https://cpl.iphy.ac.cn/Y2009/V26/I3/030203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Hua-Yan
RAN Zheng
[1] Russell J S 1844 Fourteenth Meeting of the BritishAssociation for the Advancement of Science 26 September--2 October 1844(London: John Murray) p 311
[2] Ablowitz M J and Segur H 1981 Solitons and theInverse Scattering Transformations (Philadelphia: SIAM)
[3] Gu C H et al 1990 Theory and Application of Solitons(Hangzhou: Zhejiang Science and Technology Press) (in Chinese)
[4] Fermi A, Pasta J and Ulam S 1940 Los Alamos Sci.Lab. Report Fermi A, Pasta J and Ulam S 1955 LosAlamos National Laboratory
[5] Perring J K, Skyrime and T H R 1962 Nucl. Phys. 31 550
[6] Zabusky N J and Kruskal M D 1965 Phys. Rev. Lett. 15 240
[7] Guo B Y 1990 Theory and Application of Solitons (inChinese) (Hangzhou: Zhejiang Science and Technology Press)
[8] Aoyagi A 1989 J. Comput. Phys. 83 447
[9] Herman R L 1993 J. Comput. Phys. 104 50
[10] Olver P J 1991 Applications of Lie Groups toDifferential Equations 2nd edn (New York: Springer)
[11] Ran Z 2005 Chin. Q. Mech. 26 650 (in Chinese)
[12] Ran Z 2007 SIAM J. Numer. Anal. 46 325
[13] Ran Z 2007 Chin. Phys. Lett. 24 3332 Ran Z 2008 Chin. Phys. Lett. 25 3867
[14] Chen J B et al 2002 SIAM J. Numer. Anal. 392164
[15] Chen J B et al 2008 Chin. Phys. Lett. 4 1168
[16] Ran Z 2008 Lie Symmetries Preservation and theSoliton Calculation (Report of SIAM).
Related articles from Frontiers Journals
[1] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 030203
[2] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation[J]. Chin. Phys. Lett., 2012, 29(3): 030203
[3] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 030203
[4] LV Zhong-Quan, XUE Mei, WANG Yu-Shun, ** . A New Multi-Symplectic Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 030203
[5] TIAN Rui-Lan, CAO Qing-Jie, LI Zhi-Xin. Hopf Bifurcations for the Recently Proposed Smooth-and-Discontinuous Oscillator[J]. Chin. Phys. Lett., 2010, 27(7): 030203
[6] BAO Chun-Yu, TANG Chao, YIN Xie-Zhen, LU Xi-Yun. Flutter of Finite-Span Flexible Plates in Uniform Flow[J]. Chin. Phys. Lett., 2010, 27(6): 030203
[7] LIU Fu-Hao, ZHANG Qi-Chang, TAN Ying. Analysis of High Codimensional Bifurcation and Chaos for the Quad Bundle Conductor's Galloping[J]. Chin. Phys. Lett., 2010, 27(4): 030203
[8] LIU Fu-Hao, ZHANG Qi-Chang, WANG Wei. Analysis of Hysteretic Strongly Nonlinearity for Quad Iced Bundle Conductors[J]. Chin. Phys. Lett., 2010, 27(3): 030203
[9] CHENG Hua, ZANG Wei-Ping, ZHAO Zi-Yu, LI Zu-Bin, ZHOU Wen-Yuan, TIANJian-Guo. Non-Paraxial Split-Step Semi-Vectorial Finite-Difference Method for Three-Dimensional Wide-Angle Beam Propagation[J]. Chin. Phys. Lett., 2010, 27(1): 030203
[10] LI Dong-Long, ZHAO Jun-Xiao,. Exact Periodic Solitary Solutions to the Shallow Water Wave Equation[J]. Chin. Phys. Lett., 2009, 26(5): 030203
[11] ZHAO Wei, LU Ke-Qing, ZHANG Yi-Qi, YANG Yan-Long, WANG Yi-Shan, LIUXue-Ming. Intermediate Self-similar Solutions of the Nonlinear Schrödinger Equation with an Arbitrary Longitudinal Gain Profile[J]. Chin. Phys. Lett., 2009, 26(4): 030203
[12] YUAN Xu-Jin, SHAO Xin, LIAO Hui-Min, OUYANG Qi. Pattern Formation in the Turing-Hopf Codimension-2 Phase Space in a Reaction-Diffusion System[J]. Chin. Phys. Lett., 2009, 26(2): 030203
[13] WANG Hui-Ping, WANG Yu-Shun, HU Ying-Ying. An Explicit Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2008, 25(7): 030203
[14] WEI Gang, SU Xiao-Bing, LU Dong-Qiang, YOU Yun-Xiang, DAI Shi-Qiang. Flat Solitary Waves due to a Submerged Body Moving in a Stratified Fluid[J]. Chin. Phys. Lett., 2008, 25(6): 030203
[15] ZHANG Qi-Chang, WANG Wei, LI Wei-Yi. Heteroclinic Bifurcation of Strongly Nonlinear Oscillator[J]. Chin. Phys. Lett., 2008, 25(5): 030203
Viewed
Full text


Abstract