CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
GaAs Based InAs/GaSb Superlattice Short Wavelength Infrared Detectors Grown by Molecular Beam Epitaxy |
TANG Bao, XU Ying-Qiang, ZHOU Zhi-Qiang, HAO Rui-Ting, WANG Guo-Wei, REN Zheng-Wei, NIU Zhi-Chuan |
State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 |
|
Cite this article: |
TANG Bao, XU Ying-Qiang, ZHOU Zhi-Qiang et al 2009 Chin. Phys. Lett. 26 028102 |
|
|
Abstract InAs/GaSb superlattice (SL) short wavelength infrared photoconduction detectors are grown by molecular beam epitaxy on GaAs(001) semi-insulating substrates. An interfacial misfit mode AlSb quantum dot layer and a thick GaSb layer are grown as buffer layers. The detectors containing a 200-period 2ML/8ML InAs/GaSb SL active layer are fabricated with a pixel area of 800×800μm2 without using passivation or antireflection coatings. Corresponding to the 50% cutoff wavelengths of 2.05μm at 77K and 2.25μ,m at 300K, the peak detectivities of the detectors are 4×109cm12539;Hz1/2/W at 77K and 2×108cm12539;Hz1/2/W at 300K, respectively
|
Keywords:
81.05.Ea
81.15.Hi
78.67.Pt
|
|
Received: 13 November 2008
Published: 20 January 2009
|
|
PACS: |
81.05.Ea
|
(III-V semiconductors)
|
|
81.15.Hi
|
(Molecular, atomic, ion, and chemical beam epitaxy)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
|
|
|
[1] Johnson J L, Samoska L A., Gossard A C., Merz J, Jack M D,Chapman G R, Baumgratz B A, Kosai K and Johnson S M 1996 J.Appl. Phys. 80 1116 [2] Fuchs F, Weimar U, Pletschen W, Schmitz J, Ahlswede E,Walther M, Wagner J and Koidl P 1997 Appl. Phys. Lett. 71 3251 [3] Rehm R, Walther M, Schmitz J, Flei{\ssner J, Fuchs F,Ziegler J and Cabanski W 2005 SPIE 5957 595701 [4] Zhang X B, Ryou J H, Dupuis R D, Petschke A, Mou S, ChuangS L, Xu C and Hsieh K C 2006 Appl. Phys. Lett. 88 072104 [5] Rodriguez J B, Christol P, Ouvrard A, Chevrier F, Grech Pand Joullie A 2005 Electron. Lett. 41 362 [6] Mohseni H, Tahraoui A, Wojkowski J, Razeghi M, Brown G J,Mitchel W C and Park Y S 2000 Appl. Phys. Lett. 77 1572 [7] Mohseni H, Wojkowski J, Razeghi M, Brown G and Mitchel W1999 IEEE J. Quantum Electron. 35 1041 [8] Blank H, Thomas M, Wong K and Kroemer H 1996 Appl.Phys. Lett. 69 2080 [9] Hao R T, Xu Y Q, Zhou Z Q, Ren Z W, Ni H Q, He Z H and NiuZ C 2007 J. Phys. D: Appl. Phys. 40 1080 [10] Bracker A S, Yang M J, Bennett B R, Culbertson J C andMoore W J 2000 J. Cryst. Growth 220 384 [11] Hao R T, Xu Y Q, Zhou Z Q, Ren Z W, Ni H Q, He Z H andNiu Z C 2007 J. Phys. D: Appl. Phys. 40 6690 [12] Balakrishnan G, Tatebaysshi J, Khoshakhlagh A, Huang S H,Jallipalli A, Daswon L R and Huffaker D L 2006 Appl. Phys.Lett. 89 161104 [13] Steinshnider J, Harper J, Weimer M, Lin C H, Pei S S andChow D H 2000 Phys. Rev. Lett. 85 4562 [14] Steinshnider J, Weimer M, Kaspi R and Turner G W 2000 Phys. Rev. Lett. 85 2953 [15] Renard C, Marcadet X, Massies J, Pr\'{evot I, Bisaro Rand Galtier P 2003 J. Cryst. Growth 259 69 [16] Dente G C and Tilton M L 1999 J. Appl. Phys. 86 1420 [17] Hall K C, Gundogdu K, Altunkaya E, Lau W H, Flatte M E,Boggess T, Zinck J J, arvos-Carter W B and Skeith L 2003 Phys.Rev. B 68 115311 [18] Szmulowicz F, Haugan H, and Brown G J 2004 Phys.Rev. B 69 155321 [19] Zhen H L, Li N, Xiong D Y, Zhou X C, Lu W and Liu H C2005 Chin. Phys. Lett. 22 1806 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|