Chin. Phys. Lett.  2009, Vol. 26 Issue (2): 020303    DOI: 10.1088/0256-307X/26/2/020303
GENERAL |
Simulating Entangling Unitary Operator Using Non-maximally Entangled States
LI Chun-Xian, WANG Cheng-Zhi, NIE Liu-Ying, LI Jiang-Fan
Department of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410004
Cite this article:   
LI Chun-Xian, WANG Cheng-Zhi, NIE Liu-Ying et al  2009 Chin. Phys. Lett. 26 020303
Download: PDF(304KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We use non-maximally entangled states (NMESs) to simulate an entangling unitary operator (EUO) with a certain probability. Given entanglement resources, the probability of the success we achieve is a decreasing function of the parameters of the EUO. Given an EUO, for certain entanglement resources the result is optimal, i.e., the probability obtains a maximal value, and for optimal result higher parameters of the EUO match more amount of entanglement resources. The probability of the success we achieve is higher than the known results under some condition.
Keywords: 03.67.-a      03.67.Hk      03.65.Ud     
Received: 27 October 2008      Published: 20 January 2009
PACS:  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/2/020303       OR      https://cpl.iphy.ac.cn/Y2009/V26/I2/020303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Chun-Xian
WANG Cheng-Zhi
NIE Liu-Ying
LI Jiang-Fan
[1] Eisert J, Jacobs K, Papadopoulos P and Plenio M B 2000 Phys. Rev. A 62 052317
[2] Huelga S F, Vaccaro J A, Chefles A and Plenio M B 2001 Phys. Rev. A 63 042303
[3] Chefles A, Gilson C R and Barnett S M 2001 Phys.Rev. A 63 032314
[4] Collins D, Linden N and Popescu S 2001 Phys. Rev. A 64 032302
[5] Khaneja N, Brockett R and Glaser S J 2001 Phys.Rev. A 63 032308
[6] Kraus B and Cirac J I 2001 Phys. Rev. A 63062309
[7] Nielsen M A, Dawson C M et al 2003 Phys. Rev. A 67 052301
[8] Bremner M J, Dawson C M, Dodd J L et al 2002 Phys.Rev. Lett. 89 247902
[9] Vidal G, Hammerer K and Cirac J I 2002 Phys. Rev.Lett. 88 237902
[10] Hammerer K, Vidal G and Cirac J I 2002 Phys. Rev.A 66 062321
[11] D\"{ur W, Vidal G and Cirac J I 2002 Phys. Rev.Lett. 89 057901
[12] Vidal G 1999 Phys. Rev. Lett. 83 1046
[13] Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
[14] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[15] Groisman B and Reznik B 2005 Phys. Rev. A 71 032322
[16] Chen L and Chen Y X 2005 Phys. Rev. A 71054302
[17] Ye M Y, Zhang Y S and Guo G C 2007 Phys. Rev. A 73 032337
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 020303
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 020303
[3] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 020303
[4] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 020303
[5] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 020303
[6] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 020303
[7] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 020303
[8] QIAN Yi,XU Jing-Bo**. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field[J]. Chin. Phys. Lett., 2012, 29(4): 020303
[9] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 020303
[10] Arpita Maitra, Santanu Sarkar. On Universality of Quantum Fourier Transform[J]. Chin. Phys. Lett., 2012, 29(3): 020303
[11] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 020303
[12] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 020303
[13] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 020303
[14] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 020303
[15] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 020303
Viewed
Full text


Abstract