Chin. Phys. Lett.  2009, Vol. 26 Issue (2): 020302    DOI: 10.1088/0256-307X/26/2/020302
GENERAL |
An Alternative Method for Calculating Bound-State of Energy Eigenvalues of Klein-Gordon for Quasi-exactly Solvable Potentials
Eser Olgar
Department of Physics and Engineering, University of Gaziantep, Gaziantep, Turkey
Cite this article:   
Eser Olgar 2009 Chin. Phys. Lett. 26 020302
Download: PDF(171KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We obtain the bound-state energy of the Klein--Gordon equation for some examples of quasi-exactly solvable potentials within the framework of asymptotic iteration method (AIM). The eigenvalues are calculated for type-1 solutions. The whole quasi-exactly solvable potentials are generated from the defined relation between the vector and scalar potentials
Keywords: 03.65.Ge      03.65.Fd     
Received: 11 September 2008      Published: 20 January 2009
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.Fd (Algebraic methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/2/020302       OR      https://cpl.iphy.ac.cn/Y2009/V26/I2/020302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Eser Olgar
[1] Hou C F, Sun X D, Zhou Z X and Y Li 1999 Acta Phys.Sin. 48 385 (in Chinese) Hou C F and Zhou Z X 1999 Acta Phys. Sin. (OverseasEdition) 8 561
[2] Chen C 1999\ Acta Phys. Sin. 48 385 (inChinese) Chen C et al. 2003 Acta Phys. Sin. 52 1579 (inChinese)
[3] Qiang W C 2002\ Chinese Physics 11 757 Qiang WC 2003 Chin. Phys. 12 1054
[4] Hu S Z and Su R K 1991 Acta Phys. Sin. 40 1201(in Chinese)
[5] E\u{grifes H, Demirhan D and B\"{uy\"{ukk\i l\i \c{c F1999 Phys. Scripta 60 195
[6] Jia C S et al 2003 Phys. Lett. A 311 115
[7] Yi L Z et al 2004 Phys. Lett. A 333 212
[8] Dominguez-Adame F 1989 Phys. Lett. A 136 175
[9] Chen G 2004 Phys. Scripta 69 257 Chen G, Chen Z D and Lou Z M 2004 Phys. Lett. A 331 374
[10] Cao Z Q et al 2001 Phys. Rev. A 63 0544103
[11] He Y, Cao Z Q and Shen Q S 2004 Phys. Lett. A 326 315
[12] Liang Z et al 2005 Chin. Phys. Lett. 22 2465
[13] Ol\u{gar E 2008 Chin. Phys. Lett. 25 1939
[14] \c{Cift\c{ci H, Hall R L and Saad N 2003 J. Phys.A: Math. Gen. 36 11807
[15] Barakat T, Abodayeh K and Mukheimer A 2005 J. Phys.A: Math. Gen. 38 1299 Barakat T 2005 Phys. Lett. A 344 411
[16] Fernandez F M 2004 J. of Phys. A: Math. Gen. 37 6173
[17] Saad N, Hall R L and \c{Cift\c{ci H 2006 J. Phys.A: Math. Gen. 39 8477 \c{Cift\c{ci H, Hall R\ L and Saad N 2005 J. Phys. A:Math. Gen. 38 1147
[18] Boztosun I et al. 2006 J. Math. Phys. 47062301 Bayrak O and Boztosun I 2006 J. Phys. A: Math. Gen. 39 6955
[19] Barakat T 2006 Int. J. Mod. Phys. A\ 21 4127
[20] Amore P and Fernandez F M 2006 J. Phys. A: Math.Gen. 39 10491
[21] Soylu A, Bayrak O Boztosun I 2006 Int. J. Mod.Phys. E 21 1263
[22] Bayrak O, Boztosun I and \c{Cift\c{ci H 2007 Int.J. Quant. Chem. 107 540
[23] Ol\u{gar E, Ko\c{c R and T\"{ut\"{unc\"{uler H 2008 Phys. Scripta 78 015011
[24] Soylu A, Bayrak O and Boztosun I 2008 Chin. Phys.Lett. 25 2754
[25] Saad N, Hall R L and \c{Cift\c{ci H 2008 Cent.Eur. J. Phys. 6 717
[26] Taskin F, Boztosun I and Bayrak O 2008 Int. J.Theor. Phys. 47 1612
[27] Turbiner A V 1988 Comm. Math. Phys. 118 467
[28] Natanzon G A 1979 Theor. Math. Phys. 38 146
[29] Gangopadhyaya A, Khare A and Sukhatme U P 1995 Phys.Lett. A 208 261
[30] Eisenhart L P 1948 Phys. Rev. 74 87 Razavy M 1980 Am. J. Phys. 48 285
[31] Ko\c{c R, T\"{ut\"{unc\"{uler H and Ol\u{gar E 2004 Chin. J. Phys. 42 575 Ko\c{c R, T\"{ut\"{unc\"{uler H and Ol\u{gar E 2004 J. Kor. Phys. Soc. 45 837 T\"{ut\"{unc\"{uler H, Ko\c{c R and Ol\u{gar E 2004 J. Phys. A: Math. Gen. 37 11431
[32] Ushveridze A G 1994 Quasi-Exactly Solvable Models inQuantum Mechanics (London: Taylor and Francis)
[33] Tkachuk V M 1998 Phys. Lett. A 245 177 Kuliy T V and Tkachuk VM 1999 J. Phys. A: Math. Gen. 32 2157
[34] Li B et al. 2008 Phys. Rev. A 78 023608 Zhang X F et al 2008 Phys. Rev. A 77 023613 Xie Z\ W et al 2005 Phys. Rev. A 71 025601
[35] de Dutra A S and Chen G 2006 Phys. Lett. A 349 297
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 020302
[2] LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model[J]. Chin. Phys. Lett., 2012, 29(6): 020302
[3] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 020302
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 020302
[5] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 020302
[6] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 020302
[7] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 020302
[8] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 020302
[9] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 020302
[10] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 020302
[11] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 020302
[12] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 020302
[13] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 020302
[14] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 020302
[15] ZHA Xin-Wei**, MA Gang-Long . Classification of Four-Qubit States by Means of a Stochastic Local Operation and the Classical Communication Invariant[J]. Chin. Phys. Lett., 2011, 28(2): 020302
Viewed
Full text


Abstract