Chin. Phys. Lett.  2019, Vol. 36 Issue (6): 067402    DOI: 10.1088/0256-307X/36/6/067402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Distinct Superconducting Gap on Two Bilayer-Split Fermi Surface Sheets in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Superconductor
Ping Ai1,2, Qiang Gao1,2, Jing Liu1,2, Yuxiao Zhang1,2, Cong Li1,2, Jianwei Huang1,2, Chunyao Song1,2, Hongtao Yan1,2, Lin Zhao1,2, Guo-Dong Liu1,2,5, Gen-Da Gu3, Feng-Feng Zhang4, Feng Yang4, Qin-Jun Peng4, Zu-Yan Xu4, Xing-Jiang Zhou1,2,5,6**
1National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2University of Chinese Academy of Sciences, Beijing 100049
3Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
4Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
5Songshan Lake Materials Laboratory, Dongguan 523808
6Beijing Academy of Quantum Information Sciences, Beijing 100193
Download: PDF(2816KB)   PDF(mobile)(2792KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High resolution laser-based angle-resolved photoemission measurements are carried out on an overdoped superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ with a $T_{\rm c}$ of 75 K. Two Fermi surface sheets caused by bilayer splitting are clearly identified with rather different doping levels: the bonding sheet corresponds to a doping level of 0.14, which is slightly underdoped while the antibonding sheet has a doping of 0.27 that is heavily overdoped, giving an overall doping level of 0.20 for the sample. Different superconducting gap sizes on the two Fermi surface sheets are revealed. The superconducting gap on the antibonding Fermi surface sheet follows a standard d-wave form while it deviates from the standard d-wave form for the bonding Fermi surface sheet. The maximum gap difference between the two Fermi surface sheets near the antinodal region is $\sim$2 meV. These observations provide important information for studying the relationship between the Fermi surface topology and superconductivity, and the layer-dependent superconductivity in high temperature cuprate superconductors.
Received: 30 April 2019      Published: 07 May 2019
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.72.Gh (Hole-doped)  
  79.60.-i (Photoemission and photoelectron spectra)  
  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
  74.72.Hs  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11888101, the National Key Research and Development Program of China under Grant Nos 2016YFA0300300 and 2017YFA0302900, the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB25000000), the Youth Innovation Promotion Association of CAS under Grant No 2017013, and the Research Program of Beijing Academy of Quantum Information Sciences under Grant No Y18G06. The work at Brookhaven was supported by the Office of Basic Energy Sciences, U.S. Department of Energy (DOE) under Contract No de-sc0012704.
TRENDMD:   
Cite this article:   
Ping Ai, Qiang Gao, Jing Liu et al  2019 Chin. Phys. Lett. 36 067402
URL:  
http://cpl.iphy.ac.cn/10.1088/0256-307X/36/6/067402       OR      http://cpl.iphy.ac.cn/Y2019/V36/I6/067402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ping Ai
Qiang Gao
Jing Liu
Yuxiao Zhang
Cong Li
Jianwei Huang
Chunyao Song
Hongtao Yan
Lin Zhao
Guo-Dong Liu
Gen-Da Gu
Feng-Feng Zhang
Feng Yang
Qin-Jun Peng
Zu-Yan Xu
Xing-Jiang Zhou
[1]Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473
[2]Campuzano J C et al 2004 Physics of Superconductors (Berlin: Springer) vol 2 p 167
[3]Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[4]Huefner S et al 2008 Rep. Prog. Phys. 71 062501
[5]Vishik I M et al 2012 Proc. Natl. Acad. Sci. USA 109 18332
[6]He Y et al 2018 Science 362 62
[7]Tokura Y and Arima T 1990 Jpn. J. Appl. Phys. 29 2388
[8]Eisaki H et al 2004 Phys. Rev. B 69 064512
[9]Ruan W et al 2016 Sci. Bull. 61 1826
[10]Zhou X J et al 2007 Handbook of High Temperature Superconductivity (Berlin: Springer) p 87
[11]Hashimoto M et al 2014 Nat. Phys. 10 483
[12]Andersen O K et al 1995 J. Phys. Chem. Solids 56 1573
[13]Xiang T 1996 Phys. Rev. Lett. 77 4632
[14]Xiang T et al 1998 Int. J. Mod. Phys. B 12 1007
[15]Bansil A and Lindroos M 1999 Phys. Rev. Lett. 83 5154
[16]Bogdanov P V et al 2001 Phys. Rev. B 64 180505
[17]Feng D L et al 2001 Phys. Rev. Lett. 86 5550
[18]Chuang Y D et al 2001 Phys. Rev. Lett. 87 117002
[19]Su Y H et al 2003 Phys. Rev. B 68 212501
[20]Borisenko S V et al 2002 Phys. Rev. B 66 140509
[21]Anzai H et al 2013 Nat. Commun. 4 1815
[22]Ideta S et al 2010 Phys. Rev. Lett. 104 227001
[23]Wang C L et al 2016 Phys. Rev. B 94 241119
[24]Zhou X J et al 2018 Rep. Prog. Phys. 81 062101
[25]Zhang Y X et al 2016 Chin. Phys. Lett. 33 067403
[26]Chuang Y D et al 2004 Phys. Rev. B 69 094515
[27]Gao Y A N 1988 Science 241 954
[28]Eibl O 1991 Physica C 175 419
[29]Heinrich H et al 1994 Physica C 224 133
[30]Withers R L et al 1988 J. Phys. C 21 6067
[31]Aebi P et al 1994 Physica C 235-240 949
[32]Osterwalder J et al 1995 Appl. Phys. A 60 247
[33]Ding H et al 1996 Phys. Rev. Lett. 76 1533
[34]Fretwell H M et al 2000 Phys. Rev. Lett. 84 4449
[35]Lindroos M et al 2004 Phys. Rev. B 69 140505
[36]Kordyuk A A et al 2004 Phys. Rev. B 70 214525
[37]Borisenko S V et al 2004 Phys. Rev. B 69 224509
[38]Iwasawa H et al 2007 Physica C 463--465 52
[39]Markiewicz R S 2005 Phys. Rev. B 72 054519
[40]Cuk T et al 2005 Phys. Status Solidi B 242 11
[41]He J F et al 2013 Phys. Rev. Lett. 111 107005
[42]Norman M R et al 1998 Phys. Rev. B 57 R11093
[43]Mesot J et al 1999 Phys. Rev. Lett. 83 840
[44]Ideta S et al 2010 Physica C 470 S14
[45]Kunisada S et al 2017 Phys. Rev. Lett. 119 217001
[46]Meng J Q et al 2009 Phys. Rev. B 79 024514
Related articles from Frontiers Journals
[1] Ying Ding, Lin Zhao, Hong-Tao Yan, Qiang Gao, Jing Liu, Cheng Hu, Jian-Wei Huang, Cong Li, Yu Xu, Yong-Qing Cai, Hong-Tao Rong, Ding-Song Wu, Chun-Yao Song, Hua-Xue Zhou, Xiao-Li Dong, Guo-Dong Liu, Qing-Yan Wang, Shen-Jin Zhang, Zhi-Min Wang, Feng-Feng Zhang, Feng Yang, Qin-Jun Peng, Zu-Yan Xu, Chuang-Tian Chen, X. J. Zhou. Disappearance of Superconductivity and a Concomitant Lifshitz Transition in Heavily Overdoped Bi$_2$Sr$_2$CuO$_{6}$ Superconductor Revealed by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2019, 36(1): 067402
[2] Cheng Hu, Jian-Fa Zhao, Ying Ding, Jing Liu, Qiang Gao, Lin Zhao, Guo-Dong Liu, Li Yu, Chang-Qing Jin, Chuang-Tian Chen, Zu-Yan Xu, Xing-Jiang Zhou. Evidence for Multiple Underlying Fermi Surface and Isotropic Energy Gap in the Cuprate Parent Compound Ca$_2$CuO$_2$Cl$_2$[J]. Chin. Phys. Lett., 2018, 35(6): 067402
[3] Xuan Sun, Wen-Tao Zhang, Lin Zhao, Guo-Dong Liu, Gen-Da Gu, Qin-Jun Peng, Zhi-Min Wang, Shen-Jin Zhang, Feng Yang, Chuang-Tian Chen, Zu-Yan Xu, Xing-Jiang Zhou. Temperature Evolution of Energy Gap and Band Structure in the Superconducting and Pseudogap States of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Superconductor Revealed by Laser-Based Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2018, 35(1): 067402
[4] Chen-Lu Wang, Yan Zhang, Jian-Wei Huang, Guo-Dong Liu, Ai-Ji Liang, Yu-Xiao Zhang, Bing Shen, Jing Liu, Cheng Hu, Ying Ding, De-Fa Liu, Yong Hu, Shao-Long He, Lin Zhao, Li Yu, Jin Hu, Jiang Wei, Zhi-Qiang Mao, You-Guo Shi, Xiao-Wen Jia, Feng-Feng Zhang, Shen-Jin Zhang, Feng Yang, Zhi-Min Wang, Qin-Jun Peng, Zu-Yan Xu , Chuang-Tian Chen, Xing-Jiang Zhou. Evidence of Electron-Hole Imbalance in WTe$_2$ from High-Resolution Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2017, 34(9): 067402
[5] Pai Xiang, Ji-Shan Liu, Ming-Ying Li, Hai-Feng Yang, Zheng-Tai Liu, Cong-Cong Fan, Da-Wei Shen , Zhen Wang, Zhi Liu. In Situ Electronic Structure Study of Epitaxial Niobium Thin Films by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2017, 34(7): 067402
[6] Jun Ma, Bin-Bin Fu, Jun-Zhang Ma, Ling-Yuan Kong, Di Chen, Ji-Feng Shao, Chang-Jin Zhang, Tian Qian, Yu-Heng Zhang, Hong Ding. Experimental Investigation of Electronic Structure of La(O,F)BiSe$_{2}$[J]. Chin. Phys. Lett., 2016, 33(12): 067402
[7] Ming-Qiang Ren, Ya-Jun Yan, Tong Zhang, Dong-Lai Feng. Possible Nodeless Superconducting Gaps in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ and YBa$_2$Cu$_3$O$_{7-x}$ Revealed by Cross-Sectional Scanning Tunneling Spectroscopy[J]. Chin. Phys. Lett., 2016, 33(12): 067402
[8] De-Fa Liu, Lin Zhao, Shao-Long He, Yong Hu, Bing Shen, Jian-Wei Huang, Ai-Ji Liang, Yu Xu, Xu Liu, Jun-Feng He, Dai-Xiang Mou, Shan-Yu Liu, Hai-Yun Liu, Guo-Dong Liu, Wen-Hao Zhang, Fang-Sen Li, Xu-Cun Ma, Qi-Kun Xue, Xian-Hui Chen, Gen-Fu Chen, Li Yu, Jun Zhang, Zu-Yan Xu, Chuang-Tian Chen, Xing-Jiang Zhou. Common Electronic Features and Electronic Nematicity in Parent Compounds of Iron-Based Superconductors and FeSe/SrTiO$_3$ Films Revealed by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2016, 33(07): 067402
[9] LIANG Yi, WU Xian-Xin, HU Jiang-Ping. Electronic Structure Properties in the Nematic Phases of FeSe[J]. Chin. Phys. Lett., 2015, 32(11): 067402
[10] XU Di-Fei, DU Yong-Ping, WANG Zhen, LI Yu-Peng, NIU Xiao-Hai, YAO Qi, Dudin Pavel, XU Zhu-An, WAN Xian-Gang, FENG Dong-Lai. Observation of Fermi Arcs in Non-Centrosymmetric Weyl Semi-Metal Candidate NbP[J]. Chin. Phys. Lett., 2015, 32(10): 067402
[11] KONG Wan-Dong, MIAO Hu, QIAN Tian, WANG Zhi-Jun, XU Gang, FANG Ai-Fang, HUANG Yao-Bo, ZHANG Peng, SHI Xun, FANG Zhong, DAI Xi, RICHARD Pierre, WANG Nan-Lin, DING Hong. Surface State Bands in Superconducting (PtxIr1−x)Te2[J]. Chin. Phys. Lett., 2015, 32(07): 067402
[12] LIU Yan, ZHAO Jian-Zhou, YU Li, LIN Cheng-Tian, LIANG Ai-Ji, HU Cheng, DING Ying, XU Yu, HE Shao-Long, ZHAO Lin, LIU Guo-Dong, DONG Xiao-Li, ZHANG Jun, CHEN Chuang-Tian, XU Zu-Yan, WENG Hong-Ming, DAI Xi, FANG Zhong, ZHOU Xing-Jiang. Identification of Topological Surface State in PdTe2 Superconductor by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2015, 32(06): 067402
[13] XU Min, WANG Li-Min, PENG Rui, GE Qing-Qin, CHEN Fei, YE Zi-Rong, ZHANG Yan, CHEN Su-Di, XIA Miao, LIU Rong-Hua, Arita M., Shimada K., Namatame H., Taniguchi M., Matsunami M., Kimura S., SHI Ming, CHEN Xian-Hui, YIN Wei-Guo, KU Wei, XIE Bin-Ping, FENG Dong-Lai. Electronic Structure Reconstruction across the Antiferromagnetic Transition in TaFe1.23Te3 Spin Ladder[J]. Chin. Phys. Lett., 2015, 32(02): 067402
[14] SHI Ying-Bo, HUANG Yao-Bo, WANG Xiao-Ping, SHI Xun, ROEKEGHEM A-Van, ZHANG Wei-Lu, XU Na, RICHARD Pierre, QIAN Tian, RIENKS Emile, THIRUPATHAIAH S, ZHAO Kan, JIN Chang-Qing, SHI Ming, DING Hong. Observation of Strong-Coupling Pairing with Weakened Fermi-Surface Nesting at Optimal Hole Doping in Ca0.33Na0.67Fe2As2[J]. Chin. Phys. Lett., 2014, 31(06): 067402
[15] WANG Fang-Fang, WEI Peng-Yue, DING Xue-Yong, XING Xian-Ran, CHEN Xing-Qiu. Towards a Mechanism Underlying the Stability of the Tetragonal CuO Phase: Comparison with NiO and CoO by Hybrid Density Functional Calculation[J]. Chin. Phys. Lett., 2014, 31(2): 067402
Viewed
Full text


Abstract