Chin. Phys. Lett.  2019, Vol. 36 Issue (6): 067402    DOI: 10.1088/0256-307X/36/6/067402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Distinct Superconducting Gap on Two Bilayer-Split Fermi Surface Sheets in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Superconductor
Ping Ai1,2, Qiang Gao1,2, Jing Liu1,2, Yuxiao Zhang1,2, Cong Li1,2, Jianwei Huang1,2, Chunyao Song1,2, Hongtao Yan1,2, Lin Zhao1,2, Guo-Dong Liu1,2,5, Gen-Da Gu3, Feng-Feng Zhang4, Feng Yang4, Qin-Jun Peng4, Zu-Yan Xu4, Xing-Jiang Zhou1,2,5,6**
1National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2University of Chinese Academy of Sciences, Beijing 100049
3Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
4Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
5Songshan Lake Materials Laboratory, Dongguan 523808
6Beijing Academy of Quantum Information Sciences, Beijing 100193
Cite this article:   
Ping Ai, Qiang Gao, Jing Liu et al  2019 Chin. Phys. Lett. 36 067402
Download: PDF(2816KB)   PDF(mobile)(2792KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High resolution laser-based angle-resolved photoemission measurements are carried out on an overdoped superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ with a $T_{\rm c}$ of 75 K. Two Fermi surface sheets caused by bilayer splitting are clearly identified with rather different doping levels: the bonding sheet corresponds to a doping level of 0.14, which is slightly underdoped while the antibonding sheet has a doping of 0.27 that is heavily overdoped, giving an overall doping level of 0.20 for the sample. Different superconducting gap sizes on the two Fermi surface sheets are revealed. The superconducting gap on the antibonding Fermi surface sheet follows a standard d-wave form while it deviates from the standard d-wave form for the bonding Fermi surface sheet. The maximum gap difference between the two Fermi surface sheets near the antinodal region is $\sim$2 meV. These observations provide important information for studying the relationship between the Fermi surface topology and superconductivity, and the layer-dependent superconductivity in high temperature cuprate superconductors.
Received: 30 April 2019      Published: 07 May 2019
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.72.Gh (Hole-doped)  
  79.60.-i (Photoemission and photoelectron spectra)  
  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
  74.72.Hs  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11888101, the National Key Research and Development Program of China under Grant Nos 2016YFA0300300 and 2017YFA0302900, the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB25000000), the Youth Innovation Promotion Association of CAS under Grant No 2017013, and the Research Program of Beijing Academy of Quantum Information Sciences under Grant No Y18G06. The work at Brookhaven was supported by the Office of Basic Energy Sciences, U.S. Department of Energy (DOE) under Contract No de-sc0012704.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/6/067402       OR      https://cpl.iphy.ac.cn/Y2019/V36/I6/067402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ping Ai
Qiang Gao
Jing Liu
Yuxiao Zhang
Cong Li
Jianwei Huang
Chunyao Song
Hongtao Yan
Lin Zhao
Guo-Dong Liu
Gen-Da Gu
Feng-Feng Zhang
Feng Yang
Qin-Jun Peng
Zu-Yan Xu
Xing-Jiang Zhou
[1]Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473
[2]Campuzano J C et al 2004 Physics of Superconductors (Berlin: Springer) vol 2 p 167
[3]Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[4]Huefner S et al 2008 Rep. Prog. Phys. 71 062501
[5]Vishik I M et al 2012 Proc. Natl. Acad. Sci. USA 109 18332
[6]He Y et al 2018 Science 362 62
[7]Tokura Y and Arima T 1990 Jpn. J. Appl. Phys. 29 2388
[8]Eisaki H et al 2004 Phys. Rev. B 69 064512
[9]Ruan W et al 2016 Sci. Bull. 61 1826
[10]Zhou X J et al 2007 Handbook of High Temperature Superconductivity (Berlin: Springer) p 87
[11]Hashimoto M et al 2014 Nat. Phys. 10 483
[12]Andersen O K et al 1995 J. Phys. Chem. Solids 56 1573
[13]Xiang T 1996 Phys. Rev. Lett. 77 4632
[14]Xiang T et al 1998 Int. J. Mod. Phys. B 12 1007
[15]Bansil A and Lindroos M 1999 Phys. Rev. Lett. 83 5154
[16]Bogdanov P V et al 2001 Phys. Rev. B 64 180505
[17]Feng D L et al 2001 Phys. Rev. Lett. 86 5550
[18]Chuang Y D et al 2001 Phys. Rev. Lett. 87 117002
[19]Su Y H et al 2003 Phys. Rev. B 68 212501
[20]Borisenko S V et al 2002 Phys. Rev. B 66 140509
[21]Anzai H et al 2013 Nat. Commun. 4 1815
[22]Ideta S et al 2010 Phys. Rev. Lett. 104 227001
[23]Wang C L et al 2016 Phys. Rev. B 94 241119
[24]Zhou X J et al 2018 Rep. Prog. Phys. 81 062101
[25]Zhang Y X et al 2016 Chin. Phys. Lett. 33 067403
[26]Chuang Y D et al 2004 Phys. Rev. B 69 094515
[27]Gao Y A N 1988 Science 241 954
[28]Eibl O 1991 Physica C 175 419
[29]Heinrich H et al 1994 Physica C 224 133
[30]Withers R L et al 1988 J. Phys. C 21 6067
[31]Aebi P et al 1994 Physica C 235-240 949
[32]Osterwalder J et al 1995 Appl. Phys. A 60 247
[33]Ding H et al 1996 Phys. Rev. Lett. 76 1533
[34]Fretwell H M et al 2000 Phys. Rev. Lett. 84 4449
[35]Lindroos M et al 2004 Phys. Rev. B 69 140505
[36]Kordyuk A A et al 2004 Phys. Rev. B 70 214525
[37]Borisenko S V et al 2004 Phys. Rev. B 69 224509
[38]Iwasawa H et al 2007 Physica C 463--465 52
[39]Markiewicz R S 2005 Phys. Rev. B 72 054519
[40]Cuk T et al 2005 Phys. Status Solidi B 242 11
[41]He J F et al 2013 Phys. Rev. Lett. 111 107005
[42]Norman M R et al 1998 Phys. Rev. B 57 R11093
[43]Mesot J et al 1999 Phys. Rev. Lett. 83 840
[44]Ideta S et al 2010 Physica C 470 S14
[45]Kunisada S et al 2017 Phys. Rev. Lett. 119 217001
[46]Meng J Q et al 2009 Phys. Rev. B 79 024514
Related articles from Frontiers Journals
[1] Wenjing Liu, Heming Zha, Gen-Da Gu, Xiaoping Shen, Mao Ye, and Shan Qiao. Anisotropy of Electronic Spin Texture in the High-Temperature Cuprate Superconductor Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$[J]. Chin. Phys. Lett., 2023, 40(3): 067402
[2] Yuan Wang, Yixuan Liu, Zhanyang Hao, Wenjing Cheng, Junze Deng, Yuxin Wang, Yuhao Gu, Xiao-Ming Ma, Hongtao Rong, Fayuan Zhang, Shu Guo, Chengcheng Zhang, Zhicheng Jiang, Yichen Yang, Wanling Liu, Qi Jiang, Zhengtai Liu, Mao Ye, Dawei Shen, Yi Liu, Shengtao Cui, Le Wang, Cai Liu, Junhao Lin, Ying Liu, Yongqing Cai, Jinlong Zhu, Chaoyu Chen, and Jia-Wei Mei. Flat Band and $\mathbb{Z}_2$ Topology of Kagome Metal CsTi$_{3}$Bi$_{5}$[J]. Chin. Phys. Lett., 2023, 40(3): 067402
[3] Fazhi Yang, Giao Ngoc Phan, Renjie Zhang, Jin Zhao, Jiajun Li, Zouyouwei Lu, John Schneeloch, Ruidan Zhong, Mingwei Ma, Genda Gu, Xiaoli Dong, Tian Qian, and Hong Ding. Fe$_{1+y}$Te$_{x}$Se$_{1-x}$: A Delicate and Tunable Majorana Material[J]. Chin. Phys. Lett., 2023, 40(1): 067402
[4] Yuanyuan Yang, Qisi Wang, Shaofeng Duan, Hongliang Wo, Chaozhi Huang, Shichong Wang, Lingxiao Gu, Dong Qian, Jun Zhao, and Wentao Zhang. Unusual Band Splitting and Superconducting Gap Evolution with Sulfur Substitution in FeSe[J]. Chin. Phys. Lett., 2022, 39(5): 067402
[5] Yi Zhao, Jun Deng, A. Bhattacharyya, D. T. Adroja, P. K. Biswas, Lingling Gao, Weizheng Cao, Changhua Li, Cuiying Pei, Tianping Ying, Hideo Hosono, and Yanpeng Qi. Superconductivity in the Layered Cage Compound Ba$_{3}$Rh$_{4}$Ge$_{16}$[J]. Chin. Phys. Lett., 2021, 38(12): 067402
[6] Jiao-Jiao Song, Yang Luo, Chen Zhang, Qi-Yi Wu, Tomasz Durakiewicz, Yasmine Sassa, Oscar Tjernberg, Martin Månsson, Magnus H. Berntsen, Yin-Zou Zhao, Hao Liu, Shuang-Xing Zhu, Zi-Teng Liu, Fan-Ying Wu, Shu-Yu Liu, Eric D. Bauer, Ján Rusz, Peter M. Oppeneer, Ya-Hua Yuan, Yu-Xia Duan, and Jian-Qiao Meng. The 4$f$-Hybridization Strength in Ce$_m$$M$$_n$In$_{3m+2n}$ Heavy-Fermion Compounds Studied by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2021, 38(10): 067402
[7] Zhe Huang, Xianbiao Shi, Gaoning Zhang, Zhengtai Liu, Soohyun Cho, Zhicheng Jiang, Zhonghao Liu, Jishan Liu, Yichen Yang, Wei Xia, Weiwei Zhao, Yanfeng Guo, and Dawei Shen. Photoemission Spectroscopic Evidence of Multiple Dirac Cones in Superconducting BaSn$_3$[J]. Chin. Phys. Lett., 2021, 38(10): 067402
[8] Xuedong Xie, Dongjing Lin, Li Zhu, Qiyuan Li, Junyu Zong, Wang Chen, Qinghao Meng, Qichao Tian, Shao-Chun Li, Xiaoxiang Xi, Can Wang, and Yi Zhang. Charge Density Wave and Electron-Phonon Interaction in Epitaxial Monolayer NbSe$_{2}$ Films[J]. Chin. Phys. Lett., 2021, 38(10): 067402
[9] Yu Dong, Yangyang Lv, Zuyu Xu, M. Abdel-Hafiez, A. N. Vasiliev, Haipeng Zhu, Junfeng Wang, Liang Li, Wanghao Tian, Wei Chen, Song Bao, Jinghui Wang, Yueshen Wu, Yulong Huang, Shiliang Li, Jie Yuan, Kui Jin, Labao Zhang, Huabing Wang, Shun-Li Yu, Jinsheng Wen, Jian-Xin Li, Jun Li, and Peiheng Wu. Observation of a Ubiquitous ($\pi, \pi$)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe$_{2-x}$Ni$_x$As$_2$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 067402
[10] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 067402
[11] Yongqing Cai, Tao Xie, Huan Yang, Dingsong Wu, Jianwei Huang, Wenshan Hong, Lu Cao, Chang Liu, Cong Li, Yu Xu, Qiang Gao, Taimin Miao, Guodong Liu, Shiliang Li, Li Huang, Huiqian Luo, Zuyan Xu, Hongjun Gao, Lin Zhao, and X. J. Zhou. Common ($\pi$,$\pi$) Band Folding and Surface Reconstruction in FeAs-Based Superconductors[J]. Chin. Phys. Lett., 2021, 38(5): 067402
[12] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 067402
[13] Qiang Gao, Lin Zhao, Cheng Hu, Hongtao Yan, Hao Chen, Yongqing Cai, Cong Li, Ping Ai, Jing Liu, Jianwei Huang, Hongtao Rong, Chunyao Song, Chaohui Yin, Qingyan Wang, Yuan Huang, Guo-Dong Liu, Zu-Yan Xu, and Xing-Jiang Zhou. Electronic Evolution from the Parent Mott Insulator to a Superconductor in Lightly Hole-Doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$[J]. Chin. Phys. Lett., 2020, 37(8): 067402
[14] Ya-Ting Jia, Jian-Fa Zhao, Si-Jia Zhang, Shuang Yu, Guang-Yang Dai, Wen-Min Li, Lei Duan, Guo-Qiang Zhao, Xian-Cheng Wang, Xu Zheng, Qing-Qing Liu, You-Wen Long, Zhi Li, Xiao-Dong Li, Hong-Ming Weng, Run-Ze Yu, Ri-Cheng Yu, Chang-Qing Jin. Superconductivity in Topological Semimetal $\theta$-TaN at High Pressure[J]. Chin. Phys. Lett., 2019, 36(8): 067402
[15] Ying Ding, Lin Zhao, Hong-Tao Yan, Qiang Gao, Jing Liu, Cheng Hu, Jian-Wei Huang, Cong Li, Yu Xu, Yong-Qing Cai, Hong-Tao Rong, Ding-Song Wu, Chun-Yao Song, Hua-Xue Zhou, Xiao-Li Dong, Guo-Dong Liu, Qing-Yan Wang, Shen-Jin Zhang, Zhi-Min Wang, Feng-Feng Zhang, Feng Yang, Qin-Jun Peng, Zu-Yan Xu, Chuang-Tian Chen, X. J. Zhou. Disappearance of Superconductivity and a Concomitant Lifshitz Transition in Heavily Overdoped Bi$_2$Sr$_2$CuO$_{6}$ Superconductor Revealed by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2019, 36(1): 067402
Viewed
Full text


Abstract