Chin. Phys. Lett.  2019, Vol. 36 Issue (6): 067501    DOI: 10.1088/0256-307X/36/6/067501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Classical Ground State Spin Ordering of the Antiferromagnetic $J_1$–$J_2$ Model
Ren-Gui Zhu**
College of Physics and Electronic Information, Anhui Normal University, Wuhu 241000
Cite this article:   
Ren-Gui Zhu 2019 Chin. Phys. Lett. 36 067501
Download: PDF(459KB)   PDF(mobile)(458KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The classical frustrated antiferromagnetic $J_1$–$J_2$ model is considered in a description of the classical spin wave for a vector spin system. Its ground state (GS) spin ordering is analyzed by minimizing its energy. Our analytical derivations show that all the spins in the GS phase must lie in planes that are parallel to each other. When applying the derived formulations to concrete lattices such as the square and simple cubic lattices, we find that in the large $J_2$ region, a large continuous GS degeneracy concluded by a qualitative analysis is lifted, and collinear striped ordering is selected as the GS phase.
Received: 11 December 2018      Published: 18 May 2019
PACS:  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  75.30.Et (Exchange and superexchange interactions)  
  75.10.Hk (Classical spin models)  
Fund: Supported by the National Natural Science Foundation of China under Grant No 11774002.
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/36/6/067501       OR      https://cpl.iphy.ac.cn/Y2019/V36/I6/067501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ren-Gui Zhu
[1]Diep H T 2013 Frustrated Spin Systems 2nd edn (Singapore: World Scientific)
[2]Lacroix C, Mendels P and Mila F 2011 Introduction to Frustrated Magnetism (Materials, Experiments, Theory) (Berlin: Springer)
[3]Villain J, Bidaux R, Carton J P and Conte R 1980 J. Phys. France 41 1263
[4]Shender E F 1982 Sov. Phys. JETP 56 178
[5]Henley C L 1989 Phys. Rev. Lett. 62 2056
[6]Kubo K and Kishi T 1991 J. Phys. Soc. Jpn. 60 567
[7]Dagotto E and Moreo A 1989 Phys. Rev. Lett. 63 2148
[8]Oguchi T and Kitatani H 1990 J. Phys. Soc. Jpn. 59 3322
[9]Farnell D J J, G?tze O and Richter J 2016 Phys. Rev. B 93 235123
[10]Oitmaa J 2017 Phys. Rev. B 95 014427
[11]Majumdar K and Datta T 2009 J. Phys.: Condens. Matter 21 406004
[12]Sun N N and Wang H Y 2018 J. Magn. Magn. Mater. 454 176
[13]Schmidt B and Thalmeier P 2017 Phys. Rep. 703 1
[14]Jiang W, Wang Z, Guo A B, Wang K and Wang Y N 2015 Physica E 73 250
[15]Wang L, Gu Z C, Verstraete F and Wen X G 2016 Phys. Rev. B 94 075143
[16]Wang J M, Jiang W, Zhou C L, Shi Z and Wu C 2017 Superlattices Microstruct. 102 359
[17]Blundell S 2011 Magnetism in Condensed Matter (New York: Oxford University Press Inc)
[18]Dmitriev D V and Krivnov V Y 2010 Phys. Rev. B 81 054408
[19]Zhu R G 2011 Chin. Phys. Lett. 28 097501
Related articles from Frontiers Journals
[1] Zhi-Xuan Li, Shuai Yin, and Yu-Rong Shu. Imaginary-Time Quantum Relaxation Critical Dynamics with Semi-Ordered Initial States[J]. Chin. Phys. Lett., 2023, 40(3): 067501
[2] Kai-Yue Zeng, Fang-Yuan Song, Lang-Sheng Ling, Wei Tong, Shi-Liang Li, Zhao-Ming Tian, Long Ma, and Li Pi. Incommensurate Magnetic Order in Sm$_3$BWO$_9$ with Distorted Kagome Lattice[J]. Chin. Phys. Lett., 2022, 39(10): 067501
[3] Yanxing Yang, Kaiwen Chen, Zhaofeng Ding, Adrian D. Hillier, and Lei Shu. Muon Spin Relaxation Study of Frustrated Tm$_3$Sb$_3$Mg$_2$O$_{14}$ with Kagomé Lattice[J]. Chin. Phys. Lett., 2022, 39(10): 067501
[4] Ling Wang, Yalei Zhang, and Anders W. Sandvik. Quantum Spin Liquid Phase in the Shastry–Sutherland Model Detected by an Improved Level Spectroscopic Method[J]. Chin. Phys. Lett., 2022, 39(7): 067501
[5] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 067501
[6] Yuan Wei, Xiaoyan Ma, Zili Feng, Yongchao Zhang, Lu Zhang, Huaixin Yang, Yang Qi, Zi Yang Meng, Yan-Cheng Wang, Youguo Shi, and Shiliang Li. Nonlocal Effects of Low-Energy Excitations in Quantum-Spin-Liquid Candidate Cu$_3$Zn(OH)$_6$FBr[J]. Chin. Phys. Lett., 2021, 38(9): 067501
[7] Sizhuo Yu, Yuan Gao, Bin-Bin Chen, and Wei Li. Learning the Effective Spin Hamiltonian of a Quantum Magnet[J]. Chin. Phys. Lett., 2021, 38(9): 067501
[8] Anders W. Sandvik, Bowen Zhao. Consistent Scaling Exponents at the Deconfined Quantum-Critical Point[J]. Chin. Phys. Lett., 2020, 37(5): 067501
[9] Erhan Albayrak. The Mixed Spin-1/2 and Spin-1 Ising–Heisenberg Model in the Mean-Field Approximation: a New Approach[J]. Chin. Phys. Lett., 2018, 35(3): 067501
[10] Zhong-Chao Wei, Hai-Jun Liao, Jing Chen, Hai-Dong Xie, Zhi-Yuan Liu, Zhi-Yuan Xie, Wei Li, B. Normand, Tao Xiang. Self-Consistent Spin-Wave Analysis of the 1/3 Magnetization Plateau in the Kagome Antiferromagnet[J]. Chin. Phys. Lett., 2016, 33(07): 067501
[11] Da-Chuang Li, Xian-Ping Wang, Hu Li, Xiao-Man Li, Ming Yang, Zhuo-Liang Cao. Effects of Pure Dzyaloshinskii–Moriya Interaction with Magnetic Field on Entanglement in Intrinsic Decoherence[J]. Chin. Phys. Lett., 2016, 33(05): 067501
[12] DAI Jia, WANG Peng-Shuai, SUN Shan-Shan, PANG Fei, ZHANG Jin-Shan, DONG Xiao-Li, YUE Gen, JIN Kui, CONG Jun-Zhuang, Sun Yang, YU Wei-Qiang. Nuclear-Magnetic-Resonance Properties of the Staircase Kagomé Antiferromagnet $PbCu_3TeO_7$[J]. Chin. Phys. Lett., 2015, 32(12): 067501
[13] Faizi E., Eftekhari H.. Quantum Correlations in Ising-XYZ Diamond Chain Structure under an External Magnetic Field[J]. Chin. Phys. Lett., 2015, 32(10): 067501
[14] LI Da-Chuang, LI Xiao-Man, LI Hu, TAO Rui, YANG Ming, CAO Zhuo-Liang. Thermal Entanglement in the Pure Dzyaloshinskii–Moriya Model with Magnetic Field[J]. Chin. Phys. Lett., 2015, 32(5): 067501
[15] YANG Ge, CHEN Bin. Villain Transformation for Ferrimagnetic Spin Chain[J]. Chin. Phys. Lett., 2014, 31(06): 067501
Viewed
Full text


Abstract