Chin. Phys. Lett.  2009, Vol. 26 Issue (2): 027302    DOI: 10.1088/0256-307X/26/2/027302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Schottky Barrier Formation at a Carbon Nanotube-Scandium Junction
HE Yu, ZHANG Ming, ZHANG Jin-Yu, WANG Yan, YU Zhi-Ping
Institute of Microelectronics, Tsinghua University, Beijing 100084
Cite this article:   
HE Yu, ZHANG Ming, ZHANG Jin-Yu et al  2009 Chin. Phys. Lett. 26 027302
Download: PDF(348KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recent experiment shows that scandium (Sc) can make a good performance contact with carbon nanotubes (CNTs) to fabricate n-type field effect transistor (n-FET). We study the Schottky barrier (SB) of scandium (Sc) and palladium (Pd) with a (8,0) single-wall CNT (SWCNT) using first-principles calculation. It is found that the p-type SB height (SBH) of the Pd--CNT contact is about 0.34eV, which is in good agreement with the experimental data. For the Sc-CNT contact, an n-type contact is formed and the SBH is about 0.08eV in agreement with the experimental observations. Our calculation demonstrates that by contacting CNT with Pd and Sc, p-FET and n-FET can be fabricated, respectively. The dipole effect at the interface is used to explain our result
Keywords: 73.40.Sx      73.63.Fg     
Received: 04 July 2008      Published: 20 January 2009
PACS:  73.40.Sx (Metal-semiconductor-metal structures)  
  73.63.Fg (Nanotubes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/2/027302       OR      https://cpl.iphy.ac.cn/Y2009/V26/I2/027302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HE Yu
ZHANG Ming
ZHANG Jin-Yu
WANG Yan
YU Zhi-Ping
[1] Iijima S 1991 Nature 354 56
[2] Heinze S, Radosavljevic M, Tersoff J and Avouris Ph 2003 Phys. Rev. B 68 235418
[3] Heinze S et al 2002 Phys. Rev. Lett. 89 106801
[4] Tans S J et al 1998 Nature 393 49
[5] Javey A et al 2003 Nature 424 654
[6] Kim W et al 2005 Appl. Phys. Lett. 87 173101
[7] Zhu W and Kaxiras E 2006 Appl. Phys. Lett. 89243107
[8] Chen Z et al 2005 Nano Lett. 5 1497
[9] Meng T, Wang C and Wang S 2007 J. Appl. Phys. 102 013709
[10] Zhang Z et al 2007 Nano Lett. 7 3603
[11] Bardeen J 1947 Phys. Rev. 71 717
[12] Cowley A M and Sze S M 1965 J. Appl. Phys. 363212
[13] Tersoff J 1985 Phys. Rev. B 32 6968
[14] Louie S G, Chelikowsky J R and Cohen M L 1977 Phys.Rev. B 15 2154
[15] M\"{onch W 1999 J. Vac. Sci. Technol. B 171867
[16] Spicer W E, Lindau I, Skeath P and Su C Y 1980 J.Vac. Sci Technol. 17 1019
[17] Hasegawa H and Ohno H 1986 J. Vac. Sci. Technol. B 4 1130
[18] Tung R T 2001 Phys. Rev. B 64 205310
[19] Hamann D R 1979 Phys. Rev. Lett. 42 662
[20] Kresse G, Furthmuller J 1996 Phys. Rev. B 5411169
[21] Perdew J P and Wang Y 1992 Phys. Rev. B 4513244
[22] Vanderbilt D 1990 Phys. Rev. B 41 7892
[23] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[24] Shan B and Cho K 2004 Phys. Rev. B 70 233405
[25] Shan B and Cho K 2005 Phys. Rev. Lett. 94236602
[26] Blase X, Benedict L X, Shirley E L and Louie S G 1994 Phys. Rev. Lett. 72 1878
Related articles from Frontiers Journals
[1] HU Shi-Jie,DU Wei,ZHANG Gui-Ping,GAO Miao,LU Zhong-Yi,WANG Xiao-Qun**. Exact Results for Intrinsic Electronic Transport in Graphene[J]. Chin. Phys. Lett., 2012, 29(5): 027302
[2] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 027302
[3] CHEN Cong, NING Ting-Yin, WANG Can**, ZHOU Yue-Liang, ZHANG Dong-Xiang, WANG Pei, MING Hai, YANG Guo-Zhen . Rectifying Characteristics and Transport Behavior in a Schottky Junction of CaCu 3Ti4O12 and Pt[J]. Chin. Phys. Lett., 2011, 28(8): 027302
[4] CHEN Bin**, YANG Yin-Tang, CHAI Chang-Chun, ZHANG Xian-Jun . Quantitatively Exploring the Effect of a Triangular Electrode on Performance Enhancement in a 4H-SiC Metal-Semiconductor-Metal Ultraviolet Photodetector[J]. Chin. Phys. Lett., 2011, 28(6): 027302
[5] WEI Ang, LI Wei-Wei, WANG Jing-Xia, LONG Qing, WANG Zhao, XIONG Li, DONG Xiao-Chen**, HUANG Wei** . Single-Walled Carbon Nanotube Networked Field-Effect Transistors Functionalized with Thiolated Heme for NO2 Sensing[J]. Chin. Phys. Lett., 2011, 28(12): 027302
[6] LIAO Bin, WU Xian-Ying, LIANG Hong, ZHANG Xu, LIU An-Dong. Preparation and Photocurrent Performance of Highly Ordered Titania Nanotube Implanted with Ag/Cu Metal Ions[J]. Chin. Phys. Lett., 2010, 27(7): 027302
[7] PAN Li-Jun, CHEN Wei-Guang, ZHANG Rui-Qin, HU Xing, JIA Yu. Influence of High Atomic Hydrogenation on the Electronic Structure of Zigzag Carbon Nanotubes: A First-Principles Study[J]. Chin. Phys. Lett., 2010, 27(7): 027302
[8] LAN Hai-Ping, ZHANG Shuang. Operation Mechanism of Double-Walled Carbon Nanotubes Transistors Investigated By ab initio Calculations[J]. Chin. Phys. Lett., 2009, 26(11): 027302
[9] WANG Jing, LI Mei-Ya, LIU Xiao-Lian, PEI Ling, LIU Jun, YU Ben-Fang, ZHAO Xing-Zhong,. Synthesis and Multiferroic Properties of BiFeO3 Nanotubes[J]. Chin. Phys. Lett., 2009, 26(11): 027302
[10] SHENG Lei-Mei, GAO Wei, CAO Shi-Xun, ZHANG Jin-Cang. Magnetoresistance of Multiwalled Carbon Nanotube Yarns[J]. Chin. Phys. Lett., 2008, 25(9): 027302
[11] JIANG Zhan-Feng, LI Jian, SHEN Shun-Qing, LIU Wu-Ming. Spin-Filter Effect Induced by Magnetic Edge States of Zigzag Carbon Nanotube[J]. Chin. Phys. Lett., 2008, 25(4): 027302
[12] WANG Yi, WANG Bing, ZHOU Zhi-Ping,. Tunable Omnidirectional Surface Plasmon Resonance in Cylindrical Plasmonic Structure[J]. Chin. Phys. Lett., 2008, 25(12): 027302
[13] MA Shao-Jie, GUO Wan-Lin. Mechanism of Carbon Nanotubes Aligning along Applied Electric Field[J]. Chin. Phys. Lett., 2008, 25(1): 027302
[14] LIN Jian, LI Di, CHEN Jiang-Shan, LI Jing-Hong, MA Dong-Ge. Nonvolatile Memory Devices Based on Gold Nanoparticle and Poly (N-Vinylcarbazole) Composite[J]. Chin. Phys. Lett., 2007, 24(11): 027302
[15] LI Zhi-Bing, WANG Wei-Liang. Analytic Solution of Charge Density of Single Wall Carbon Nanotube under Conditions of Field Electron Emission[J]. Chin. Phys. Lett., 2006, 23(6): 027302
Viewed
Full text


Abstract