[1] | Gurevich A 2011 Nat. Mater. 10 255 | To use or not to use cool superconductors?
[2] | Hahn S, Kim K, Kim K, Hu X, Painter T, Dixon I, Kim S, Bhattarai K R, Noguchi S, Jaroszynski J, and Larbalestier D C 2019 Nature 570 496 | 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet
[3] | Stewart G 2015 Physica C 514 28 | Superconductivity in the A15 structure
[4] | Poole C K, Farach H A, and Creswick R J 1999 Handbook of Superconductivity (Amsterdam: Elsevier) |
[5] | Stewart G, Fisk Z, Willis J, and Smith J 1984 Phys. Rev. Lett. 52 679 | Possibility of Coexistence of Bulk Superconductivity and Spin Fluctuations in U
[6] | Tao Q, shen J Q, Li L J et al 2009 Chin. Phys. Lett. 26 097401 | Upper Critical Fields and Anisotropy of BaFe1.9Ni0.1As2 Single Crystals
[7] | Bauer E, Hilscher G, Michor H, Paul C, Scheidt E, Gribanov A, Seropegin Y, Noel H, Sigrist M, and Rogl P 2004 Phys. Rev. Lett. 92 027003 | Heavy Fermion Superconductivity and Magnetic Order in Noncentrosymmetric
[8] | Gupta R, Ying T, Qi Y, Hosono H, and Khasanov R 2021 Phys. Rev. B 103 174511 | Gap symmetry of the noncentrosymmetric superconductor
[9] | Bao J K, Liu J Y, Ma C W, Meng Z H, Tang Z T, Sun Y L, Zhai H F, Jiang H, Bai H, Feng C M et al. 2015 Phys. Rev. X 5 011013 | Superconductivity in Quasi-One-Dimensional with Significant Electron Correlations
[10] | Zhi H, Imai T, Ning F, Bao J K, and Cao G H 2015 Phys. Rev. Lett. 114 147004 | NMR Investigation of the Quasi-One-Dimensional Superconductor
[11] | Tang Z T, Bao J K, Liu Y, Sun Y L, Ablimit A, Zhai H F, Jiang H, Feng C M, Xu Z A, and Cao G H 2015 Phys. Rev. B 91 020506 | Unconventional superconductivity in quasi-one-dimensional
[12] | Cao Y, Park J M, Watanabe K, Taniguchi T, and Jarillo-Herrero P 2021 Nature 595 526 | Pauli-limit violation and re-entrant superconductivity in moiré graphene
[13] | Lu Y, Takayama T, Bangura A F, Katsura Y, Hashizume D, and Takagi H 2014 J. Phys. Soc. Jpn. 83 023702 | Superconductivity at 6 K and the Violation of Pauli Limit in Ta 2 Pd x S 5
[14] | Okuda K, Kitagawa M, Sakakibara T, and Date M 1980 J. Phys. Soc. Jpn. 48 2157 | Upper Critical Field Measurements up to 600 kG in PbMo 6 S 8
[15] | Chan Y C, Yip K Y, Cheung Y W, Chan Y T, Niu Q, Kajitani J, Higashinaka R, Matsuda T D, Yanase Y, Aoki Y, Lai K T, and Goh S K 2018 Phys. Rev. B 97 104509 | Anisotropic two-gap superconductivity and the absence of a Pauli paramagnetic limit in single-crystalline
[16] | Taylor A and Sachs K 1952 Nature 169 411 | A New Complex Eta-Carbide
[17] | Kuo K 1953 Acta Metall. 1 301 | The formation of η carbides
[18] | Newsam J, Jacobson A, McCandlish L, and Polizzotti R 1988 J. Solid State Chem. 75 296 | The structures of the η-carbides Ni6Mo6C, Co6Mo6C, and Co6Mo6C2
[19] | Jeitschko W, Holleck H, Nowotny H, and Benesovsky F 1964 Monatsh. Chem. - Chem. Mon. 95 1004 | Phasen mit aufgef�lltem Ti2Ni-Typ
[20] | Dubrovinskaia N, Dubrovinsky L, Saxena S, Selleby M, and Sundman B 1999 J. Alloys Compd. 285 242 | Thermal expansion and compressibility of Co6W6C
[21] | Zavalii I, Verbovytskyi Y, Berezovets V, Shtender V, Pecharsky V, and Lyutyi P 2017 Mater. Sci. 53 306 | Synthesis, Structure, and Hydrogen-Sorption Properties of (Ti,Zr)4Ni2N x Subnitrides
[22] | Nagai M, Zahidul A M, and Matsuda K 2006 Appl. Catal. A 313 137 | Nano-structured nickel–molybdenum carbide catalyst for low-temperature water-gas shift reaction
[23] | Ku H and Johnston D 1984 Chin. J. Phys. 22 59 |
[24] | Ma K, Lago J, and von Rohr F O 2019 J. Alloys Compd. 796 287 | Superconductivity in the η-carbide-type oxides
[25] | Ma K, Gornicka K, Lefèvre R, Yang Y, Rønnow H M, Jeschke H O, Klimczuk T, and von Rohr F O 2021 ACS Mater. Au 1 55 | Superconductivity with High Upper Critical Field in the Cubic Centrosymmetric η-Carbide Nb 4 Rh 2 C 1−δ
[26] | Matthias B, Geballe T, and Compton V 1963 Rev. Mod. Phys. 35 1 | Superconductivity
[27] | Zegler S 1965 J. Phys. Chem. Solids 26 1347 | Superconductivity in zirconium-rhodium alloys
[28] | Toby B 2001 J. Appl. Crystallogr. 34 210 | EXPGUI , a graphical user interface for GSAS
[29] | Ruan B B, Yang Q S, Zhou M H, Chen G F, and Ren Z A 2021 J. Alloys Compd. 868 159230 | Superconductivity in a new T2-phase Mo5GeB2
[30] | Prozorov R and Kogan V G 2018 Phys. Rev. Appl. 10 014030 | Effective Demagnetizing Factors of Diamagnetic Samples of Various Shapes
[31] | Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal C A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, and Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502 | QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
[32] | Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli M B, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, Corso A D, de Gironcoli S, Delugas P, DiStasio R A, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko H Y, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen N L, Nguyen H V, Otero-de-la-Roza A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen A P, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, and Baroni S 2017 J. Phys.: Condens. Matter 29 465901 | Advanced capabilities for materials modelling with Quantum ESPRESSO
[33] | Giannozzi P, Baseggio O, Bonfa P, Brunato D, Car R, Carnimeo I, Cavazzoni C, de Gironcoli S, Delugas P, Ruffino F F, Ferretti A, Marzari N, Timrov I, Urru A, and Baroni S 2020 J. Chem. Phys. 152 154105 | Q uantum ESPRESSO toward the exascale
[34] | Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, and Burke K 2008 Phys. Rev. Lett. 100 136406 | Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces
[35] | Dal C A 2014 Comput. Mater. Sci. 95 337 | Pseudopotentials periodic table: From H to Pu
[36] | Otero-de-la-Roza A, Johnson E R, and Luana V 2014 Comput. Phys. Commun. 185 1007 | Critic2: A program for real-space analysis of quantum chemical interactions in solids
[37] | Fuhr J D, Roura-Bas P, and Aligia A A 2021 Phys. Rev. B 103 035126 | Maximally localized Wannier functions for describing a topological phase transition in stanene
[38] | Pizzi G, Vitale V, Arita R, Bluegel S, Freimuth F, Geranton G, Gibertini M, Gresch D, Johnson C, Koretsune T, Ibanez-Azpiroz J, Lee H, Lihm J M, Marchand D, Marrazzo A, Mokrousov Y, Mustafa I J, Nohara Y, Nomura Y, Paulatto L, Ponce S, Ponweiser T, Qiao J, Thoele F, Tsirkin S S, Wierzbowska M, Marzari N, Vanderbilt D, Souza I, Mostofi A A, and Yates J R 2020 J. Phys.: Condens. Matter 32 165902 | Wannier90 as a community code: new features and applications
[39] | Okamoto H, Massalski T et al. 1990 Binary Alloy Phase Diagrams (Materials Park, OH: ASM International) |
[40] | Xu C, Wang H, Tian H, Shi Y, Li Z A, Xiao R, Shi H, Yang H, and Li J 2021 Chin. Phys. B 30 077403 | Superconductivity in an intermetallic oxide Hf 3 Pt 4 Ge 2 O*
[41] | Carbotte J 1990 Rev. Mod. Phys. 62 1027 | Properties of boson-exchange superconductors
[42] | Fisk Z and Webb G 1976 Phys. Rev. Lett. 36 1084 | Saturation of the High-Temperature Normal-State Electrical Resistivity of Superconductors
[43] | Takayama T, Kuwano K, Hirai D, Katsura Y, Yamamoto A, and Takagi H 2012 Phys. Rev. Lett. 108 237001 | Strong Coupling Superconductivity at 8.4 K in an Antiperovskite Phosphide
[44] | Mott N F, Jones H, Jones H, and Jones H 1958 The Theory of the Properties of Metals and Alloys (Courier Dover Publications) |
[45] | Mott N F 1964 Adv. Phys. 13 325 | Electrons in transition metals
[46] | Werthamer N, Helfand E, and PC H 1966 Phys. Rev. 147 288 | Temperature and Purity Dependence of the Superconducting Critical Field, . II
[47] | Bud'ko S, Petrovic C, Lapertot G, Cunningham C, Canfield P, Jung M, and Lacerda A 2001 Phys. Rev. B 63 220503 | Magnetoresistivity and in
[48] | Suderow H, Tissen V, Brison J, Martı́nez J, and Vieira S 2005 Phys. Rev. Lett. 95 117006 | Pressure Induced Effects on the Fermi Surface of Superconducting
[49] | De Faria L R, Ferreira P P, Correa L E, Eleno L T, Torikachvili M S, and Machado A J 2021 Supercond. Sci. Technol. 34 065010 | Possible multiband superconductivity in the quaternary carbide YRe 2 SiC
[50] | Gurevich A 2003 Phys. Rev. B 67 184515 | Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors
[51] | McMillan W L 1968 Phys. Rev. 167 331 | Transition Temperature of Strong-Coupled Superconductors
[52] | Mercure J F, Bangura A F, Xu X, Wakeham N, Carrington A, Walmsley P, Greenblatt M, and Hussey N E 2012 Phys. Rev. Lett. 108 187003 | Upper Critical Magnetic Field far above the Paramagnetic Pair-Breaking Limit of Superconducting One-Dimensional Single Crystals
[53] | Ishikawa H, Wedig U, Nuss J, Kremer R K, Dinnebier R, Blankenhorn M, Pakdaman M, Matsumoto Y, Takayama T, Kitagawa K, and Takagi H 2019 Inorg. Chem. 58 12888 | Superconductivity at 4.8 K and Violation of Pauli Limit in La 2 IRu 2 Comprising Ru Honeycomb Layer
[54] | Mu Q G, Ruan B B, Zhao K, Pan B J, Liu T, Shan L, Chen G F, and Ren Z A 2018 Sci. Bull. 63 952 | Superconductivity at 10.4 K in a novel quasi-one-dimensional ternary molybdenum pnictide K2Mo3As3
[55] | Altarawneh M, Harrison N, Li G, Balicas L, Tobash P, Ronning F, and Bauer E 2012 Phys. Rev. Lett. 108 066407 | Superconducting Pairs with Extreme Uniaxial Anisotropy in
[56] | Anand V K, Adroja D T, and Hillier A D 2012 Phys. Rev. B 85 014418 | Ferromagnetic cluster spin-glass behavior in PrRhSn
[57] | Tong P, Sun Y P, Zhu X B, and Song W H 2006 Phys. Rev. B 73 245106 | Strong electron-electron correlation in the antiperovskite compound
[58] | Steglich F, Aarts J, Bredl C, Lieke W, Meschede D, Franz W, and Schafer H 1979 Phys. Rev. Lett. 43 1892 | Superconductivity in the Presence of Strong Pauli Paramagnetism: Ce
[59] | Ma K, Lefèvre R, Gornicka K, Jeschke H O, Zhang X, Guguchia Z, Klimczuk T, and von Rohr F O 2021 Chem. Mater. 33 8722 | Group-9 Transition-Metal Suboxides Adopting the Filled-Ti 2 Ni Structure: A Class of Superconductors Exhibiting Exceptionally High Upper Critical Fields