Supplementary Material for "Superconductivity with a Violation

of Pauli Limit and Evidences for Multigap in η -Carbide type

Ti₄Ir₂O"

Bin-Bin Ruan(阮彬彬)^{1,2*}, Meng-Hu Zhou(周孟虎)^{1,2}, Qing-Song Yang(杨清松)^{2,3},

Ya-Dong Gu(谷亚东)^{2,3}, Ming-Wei Ma(马明伟)², Gen-Fu Chen(陈根富)^{2,3},

and Zhi-An Ren(任治安)^{2,3*}

¹Songshan Lake Materials Laboratory, Dongguan 523808, China

²Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China

³School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding authors. E-mail: <u>bbruan@mail.ustc.edu.cn</u>; <u>renzhian@iphy.ac.cn</u>

Figure S1: Representative XRD patterns of Ti_4Ir_2O samples prepared with different methods. From bottom to top: SSR (Solid state reaction) at 1800 K, SSR at 1250 K, SSR at 1200 K, and arc-melted samples. SSR at 1800 K produced single-phase sample, while the other three methods produced multi-phase samples. The lattice parameter *a* is slightly different too. *Tetr.* TiIr stands for tetragonal TiIr (space group *P4/mmm*). " \downarrow " indicates an unidentified phase.

Figure S2: Electrical and magnetic properties of Ti_4Ir_2O prepared by SSR at 1200 K. Notice that although T_c of this sample is somewhat higher than the one shown in the main text, the transition width is larger, and the upper critical field is lower (but still above the Pauli limit), indicating a less good sample quality. (a) DC magnetic susceptibility under 10 Oe from 1.8 K to 8 K. (b) Isothermal magnetization curves at different temperatures. (c) Superconducting transition under different magnetic fields. (d) Upper critical fields at different temperatures, and its fit by G–L relation.

Figure S3: DC magnetic susceptibility of Ti₄Ir₂O prepared by arc-melting method.

Figure S4: Charge density (left) and electron localization function (ELF) (right) of Ti_4Ir_2O calculated with SOC. The charge density is bound between 0 and 0.2 e/a_0^3 (a_0 is the Bohr radius), while ELF is bound between 0 and 1.

Figure S5: Fermi surfaces of Ti_4Ir_2O (a) without SOC and (b) with SOC.