[1] | Anderson P W 1973 Mater. Res. Bull. 8 153 | Resonating valence bonds: A new kind of insulator?
[2] | Anderson P W 1987 Science 235 1196 | The Resonating Valence Bond State in La2CuO4 and Superconductivity
[3] | Balents L 2010 Nature 464 199 | Spin liquids in frustrated magnets
[4] | Zhou Y, Kanoda K, and Ng T K 2017 Rev. Mod. Phys. 89 025003 | Quantum spin liquid states
[5] | Savary L and Balents L 2017 Rep. Prog. Phys. 80 016502 | Quantum spin liquids: a review
[6] | Wen J, Yu S L, Li S, Yu W, and Li J X 2019 npj Quantum Mater. 4 12 | Experimental identification of quantum spin liquids
[7] | Broholm C, Cava R J, Kivelson S A, Nocera D G, Norman M R, and Senthil T 2020 Science 367 eaay0668 | Quantum spin liquids
[8] | Kitaev A 2006 Ann. Phys. 321 2 | Anyons in an exactly solved model and beyond
[9] | Trebst S 2017 arXiv:1701.07056 [cond-mat.str-el] | Kitaev Materials
[10] | Kitaev A Y 2003 Ann. Phys. 303 2 | Fault-tolerant quantum computation by anyons
[11] | Nayak C, Simon S H, Stern A, Freedman M, and Sarma S D 2008 Rev. Mod. Phys. 80 1083 | Non-Abelian anyons and topological quantum computation
[12] | Barkeshli M, Berg E, and Kivelson S 2014 Science 346 722 | Coherent transmutation of electrons into fractionalized anyons
[13] | Jackeli G and Khaliullin G 2009 Phys. Rev. Lett. 102 017205 | Mott Insulators in the Strong Spin-Orbit Coupling Limit: From Heisenberg to a Quantum Compass and Kitaev Models
[14] | Rau J G, Lee E K H, and Kee H Y 2016 Annu. Rev. Condens. Matter Phys. 7 195 | Spin-Orbit Physics Giving Rise to Novel Phases in Correlated Systems: Iridates and Related Materials
[15] | Chaloupka J, Jackeli G, and Khaliullin G 2010 Phys. Rev. Lett. 105 027204 | Kitaev-Heisenberg Model on a Honeycomb Lattice: Possible Exotic Phases in Iridium Oxides
[16] | Kimchi I and You Y Z 2011 Phys. Rev. B 84 180407 | Kitaev-Heisenberg- - model for the iridates IrO
[17] | Singh Y, Manni S, Reuther J, Berlijn T, Thomale R, Ku W, Trebst S, and Gegenwart P 2012 Phys. Rev. Lett. 108 127203 | Relevance of the Heisenberg-Kitaev Model for the Honeycomb Lattice Iridates
[18] | Chaloupka J, Jackeli G, and Khaliullin G 2013 Phys. Rev. Lett. 110 097204 | Zigzag Magnetic Order in the Iridium Oxide
[19] | Rau J G, Lee E K H, and Kee H Y 2014 Phys. Rev. Lett. 112 077204 | Generic Spin Model for the Honeycomb Iridates beyond the Kitaev Limit
[20] | Sizyuk Y, Price C, Wölfle P, and Perkins N B 2014 Phys. Rev. B 90 155126 | Importance of anisotropic exchange interactions in honeycomb iridates: Minimal model for zigzag antiferromagnetic order in
[21] | Chun S H, Kim J W, Kim J, Zheng H, Stoumpos C C, Malliakas C D, Mitchell J F, Mehlawat K, Singh Y, Choi Y, Gog T, Al-Zein A, Sala M M, Krisch M, Chaloupka J, Jackeli G, Khaliullin G, and Kim B J 2015 Nat. Phys. 11 462 | Direct evidence for dominant bond-directional interactions in a honeycomb lattice iridate Na2IrO3
[22] | Winter S M, Tsirlin A A, Daghofer M, van den Brink J, Singh Y, Gegenwart P, and Valentí R 2017 J. Phys.: Condens. Matter 29 493002 | Models and materials for generalized Kitaev magnetism
[23] | Winter S M, Li Y, Jeschke H O, and Valentí R 2016 Phys. Rev. B 93 214431 | Challenges in design of Kitaev materials: Magnetic interactions from competing energy scales
[24] | Mazin I I, Jeschke H O, Foyevtsova K, Valentí R, and Khomskii D I 2012 Phys. Rev. Lett. 109 197201 | as a Molecular Orbital Crystal
[25] | Foyevtsova K, Jeschke H O, Mazin I I, Khomskii D I, and Valentí R 2013 Phys. Rev. B 88 035107 | Ab initio analysis of the tight-binding parameters and magnetic interactions in Na IrO
[26] | Plumb K W, Clancy J P, Sandilands L J, Shankar V V, Hu Y F, Burch K S, Kee H Y, and Kim Y J 2014 Phys. Rev. B 90 041112 | : A spin-orbit assisted Mott insulator on a honeycomb lattice
[27] | Sears J A, Songvilay M, Plumb K W, Clancy J P, Qiu Y, Zhao Y, Parshall D, and Kim Y J 2015 Phys. Rev. B 91 144420 | Magnetic order in : A honeycomb-lattice quantum magnet with strong spin-orbit coupling
[28] | Johnson R D, Williams S C, Haghighirad A A, Singleton J, Zapf V, Manuel P, Mazin I I, Li Y, Jeschke H O, Valentí R, and Coldea R 2015 Phys. Rev. B 92 235119 | Monoclinic crystal structure of and the zigzag antiferromagnetic ground state
[29] | Banerjee A, Bridges C A, Yan J Q, Aczel A A, Li L, Stone M B, Granroth G E, Lumsden M D, Yiu Y, Knolle J, Bhattacharjee S, Kovrizhin D L, Moessner R, Tennant D A, Mandrus D G, and Nagler S E 2016 Nat. Mater. 15 733 | Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet
[30] | Cao H B, Banerjee A, Yan J Q, Bridges C A, Lumsden M D, Mandrus D G, Tennant D A, Chakoumakos B C, and Nagler S E 2016 Phys. Rev. B 93 134423 | Low-temperature crystal and magnetic structure of
[31] | Ran K, Wang J, Wang W, Dong Z Y, Ren X, Bao S, Li S, Ma Z, Gan Y, Zhang Y, Park J T, Deng G, Danilkin S, Yu S L, Li J X, and Wen J 2017 Phys. Rev. Lett. 118 107203 | Spin-Wave Excitations Evidencing the Kitaev Interaction in Single Crystalline
[32] | Kim H S, Vijay S V, Catuneanu A, and Kee H Y 2015 Phys. Rev. B 91 241110 | Kitaev magnetism in honeycomb with intermediate spin-orbit coupling
[33] | Sandilands L J, Tian Y, Reijnders A A, Kim H S, Plumb K W, Kim Y J, Kee H Y, and Burch K S 2016 Phys. Rev. B 93 075144 | Spin-orbit excitations and electronic structure of the putative Kitaev magnet
[34] | Kim H S and Kee H Y 2016 Phys. Rev. B 93 155143 | Crystal structure and magnetism in : An ab initio study
[35] | Wang W, Dong Z Y, Yu S L, and Li J X 2017 Phys. Rev. B 96 115103 | Theoretical investigation of magnetic dynamics in
[36] | Janssen L, Andrade E C, and Vojta M 2017 Phys. Rev. B 96 064430 | Magnetization processes of zigzag states on the honeycomb lattice: Identifying spin models for and
[37] | Banerjee A, Yan J, Knolle J, Bridges C A, Stone M B, Lumsden M D, Mandrus D G, Tennant D A, Moessner R, and Nagler S E 2017 Science 356 1055 | Neutron scattering in the proximate quantum spin liquid α-RuCl 3
[38] | Gohlke M, Wachtel G, Yamaji Y, Pollmann F, and Kim Y B 2018 Phys. Rev. B 97 075126 | Quantum spin liquid signatures in Kitaev-like frustrated magnets
[39] | Sears J A, Chern L E, Kim S, Bereciartua P J, Francoual S, Kim Y B, and Kim Y J 2020 Nat. Phys. 16 837 | Ferromagnetic Kitaev interaction and the origin of large magnetic anisotropy in α-RuCl3
[40] | Kubota Y, Tanaka H, Ono T, Narumi Y, and Kindo K 2015 Phys. Rev. B 91 094422 | Successive magnetic phase transitions in : XY-like frustrated magnet on the honeycomb lattice
[41] | Majumder M, Schmidt M, Rosner H, Tsirlin A A, Yasuoka H, and Baenitz M 2015 Phys. Rev. B 91 180401 | Anisotropic magnetism in the honeycomb system: Susceptibility, specific heat, and zero-field NMR
[42] | Sears J A, Zhao Y, Xu Z, Lynn J W, and Kim Y J 2017 Phys. Rev. B 95 180411 | Phase diagram of in an in-plane magnetic field
[43] | Aoyama T, Hasegawa Y, Kimura S, Kimura T, and Ohgushi K 2017 Phys. Rev. B 95 245104 | Anisotropic magnetodielectric effect in the honeycomb-type magnet
[44] | Yu Y J, Xu Y, Ran K J, Ni J M, Huang Y Y, Wang J H, Wen J S, and Li S Y 2018 Phys. Rev. Lett. 120 067202 | Ultralow-Temperature Thermal Conductivity of the Kitaev Honeycomb Magnet across the Field-Induced Phase Transition
[45] | Banerjee A, Lampen-Kelley P, Knolle J, Balz C, Aczel A A, Winn B, Liu Y, Pajerowski D, Yan J, Bridges C A, Savici A T, Chakoumakos B C, Lumsden M D, Tennant D A, Moessner R, Mandrus D G, and Nagler S E 2018 npj Quantum Mater. 3 8 | Excitations in the field-induced quantum spin liquid state of α-RuCl3
[46] | Balz C, Lampen-Kelley P, Banerjee A, Yan J, Lu Z, Hu X, Yadav S M, Takano Y, Liu Y, Tennant D A, Lumsden M D, Mandrus D, and Nagler S E 2019 Phys. Rev. B 100 060405 | Finite field regime for a quantum spin liquid in
[47] | Cui Y, Zheng J, Ran K, Wen J, Liu Z X, Liu B, Guo W, and Yu W 2017 Phys. Rev. B 96 205147 | High-pressure magnetization and NMR studies of
[48] | Bastien G, Garbarino G, Yadav R, Martinez-Casado F J, Rodríguez R B, Stahl Q, Kusch M, Limandri S P, Ray R, Lampen-Kelley P, Mandrus D G, Nagler S E, Roslova M, Isaeva A, Doert T, Hozoi L, Wolter A U B, Büchner B, Geck J, and van den Brink J 2018 Phys. Rev. B 97 241108 | Pressure-induced dimerization and valence bond crystal formation in the Kitaev-Heisenberg magnet
[49] | Wang Z, Guo J, Tafti F F, Hegg A, Sen S, Sidorov V A, Wang L, Cai S, Yi W, Zhou Y, Wang H, Zhang S, Yang K, Li A, Li X, Li Y, Liu J, Shi Y, Ku W, Wu Q, Cava R J, and Sun L 2018 Phys. Rev. B 97 245149 | Pressure-induced melting of magnetic order and emergence of a new quantum state in
[50] | Baek S H, Do S H, Choi K Y, Kwon Y S, Wolter A U B, Nishimoto S, van den Brink J, and Büchner B 2017 Phys. Rev. Lett. 119 037201 | Evidence for a Field-Induced Quantum Spin Liquid in -
[51] | Zheng J, Ran K, Li T, Wang J, Wang P, Liu B, Liu Z X, Normand B, Wen J, and Yu W 2017 Phys. Rev. Lett. 119 227208 | Gapless Spin Excitations in the Field-Induced Quantum Spin Liquid Phase of
[52] | Liu Z X and Normand B 2018 Phys. Rev. Lett. 120 187201 | Dirac and Chiral Quantum Spin Liquids on the Honeycomb Lattice in a Magnetic Field
[53] | Kasahara Y, Ohnishi T, Mizukami Y, Tanaka O, Ma S, Sugii K, Kurita N, Tanaka H, Nasu J, Motome Y, Shibauchi T, and Matsuda Y 2018 Nature 559 227 | Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid
[54] | Winter S M, Riedl K, Maksimov P A, Chernyshev A L, Honecker A, and Valentí R 2017 Nat. Commun. 8 1152 | Breakdown of magnons in a strongly spin-orbital coupled magnet
[55] | Sandilands L J, Tian Y, Plumb K W, Kim Y J, and Burch K S 2015 Phys. Rev. Lett. 114 147201 | Scattering Continuum and Possible Fractionalized Excitations in
[56] | Nasu J, Knolle J, Kovrizhin D L, Motome Y, and Moessner R 2016 Nat. Phys. 12 912 | Fermionic response from fractionalization in an insulating two-dimensional magnet
[57] | Little A, Wu L, Lampen-Kelley P, Banerjee A, Patankar S, Rees D, Bridges C A, Yan J Q, Mandrus D, Nagler S E, and Orenstein J 2017 Phys. Rev. Lett. 119 227201 | Antiferromagnetic Resonance and Terahertz Continuum in
[58] | Wang Z, Reschke S, Hüvonen D, Do S H, Choi K Y, Gensch M, Nagel U, Rõõm T, and Loidl A 2017 Phys. Rev. Lett. 119 227202 | Magnetic Excitations and Continuum of a Possibly Field-Induced Quantum Spin Liquid in
[59] | Reschke S, Mayr F, Wang Z, Do S H, Choi K Y, and Loidl A 2017 Phys. Rev. B 96 165120 | Electronic and phonon excitations in
[60] | Do S H, Park S Y, Yoshitake J, Nasu J, Motome Y, Kwon Y S, Adroja D T, Voneshen D J, Kim K, Jang T H, Park J H, Choi K Y, and Ji S 2017 Nat. Phys. 13 1079 | Majorana fermions in the Kitaev quantum spin system α-RuCl3
[61] | Nathans R, Shull C G, Shirane G, and Andresen A 1959 J. Phys. Chem. Solids 10 138 | The use of polarized neutrons in determining the magnetic scattering by iron and nickel
[62] | Moon R M, Riste T, and Koehler W C 1969 Phys. Rev. 181 920 | Polarization Analysis of Thermal-Neutron Scattering
[63] | Schneidewind A and Čermák P 2015 J. Large-Scale Res. Facil. 1 A12 | PANDA: Cold three axes spectrometer
[64] | Schaerpf O and Capellmann H 1993 Phys. Status Solidi A 135 359 | TheXYZ-Difference Method with Polarized Neutrons and the Separation of Coherent, Spin Incoherent, and Magnetic Scattering Cross Sections in a Multidetector
[65] | Shirane G, Shapiro S M, and Tranquada J M 2002 Neutron Scattering with a Triple-Axis Spectrometer: Basic Techniques (Cambridge: Cambridge University Press) |
[66] | Li H, Qu D W, Zhang H K, Jia Y Z, Gong S S, Qi Y, and Li W 2020 Phys. Rev. Res. 2 043015 | Universal thermodynamics in the Kitaev fractional liquid
[67] | Yu S L, Wang W, Dong Z Y, Yao Z J, and Li J X 2018 Phys. Rev. B 98 134410 | Deconfinement of spinons in frustrated spin systems: Spectral perspective
[68] | Schweika W 2010 J. Phys.: Conf. Ser. 211 012026 | XYZ-polarisation analysis of diffuse magnetic neutron scattering from single crystals