[1] | Nicholson T L et al 2015 Nat. Commun. 6 6896 | Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty
[2] | Ludlow A D et al 2015 Rev. Mod. Phys. 87 637 | Optical atomic clocks
[3] | Huntemann N et al 2016 Phys. Rev. Lett. 116 063001 | Single-Ion Atomic Clock with Systematic Uncertainty
[4] | Bloom B J et al 2014 Nature 506 71 | An optical lattice clock with accuracy and stability at the 10−18 level
[5] | Hinkley N et al 2013 Science 341 1215 | An Atomic Clock with 10-18 Instability
[6] | Chou C W et al 2010 Phys. Rev. Lett. 104 070802 | Frequency Comparison of Two High-Accuracy Optical Clocks
[7] | Godun R M et al 2014 Phys. Rev. Lett. 113 210801 | Frequency Ratio of Two Optical Clock Transitions in and Constraints on the Time Variation of Fundamental Constants
[8] | Huang Y et al 2016 Phys. Rev. Lett. 116 013001 | Frequency Comparison of Two Optical Clocks with an Uncertainty at the Level
[9] | Blatt S et al 2008 Phys. Rev. Lett. 100 140801 | New Limits on Coupling of Fundamental Constants to Gravity Using Optical Lattice Clocks
[10] | Huntemann N et al 2014 Phys. Rev. Lett. 113 210802 | Improved Limit on a Temporal Variation of from Comparisons of and Cs Atomic Clocks
[11] | Derevianko A and Pospelov M 2014 Nat. Phys. 10 933 | Hunting for topological dark matter with atomic clocks
[12] | Chou C W et al 2010 Science 329 1630 | Optical Clocks and Relativity
[13] | Lin Y G et al 2015 Chin. Phys. Lett. 32 090601 | First Evaluation and Frequency Measurement of the Strontium Optical Lattice Clock at NIM
[14] | Zhou M et al 2013 Asia-Pacific Radio Science Conference (Taipei 3–7 September 2013) |
[15] | Lemke N D et al 2009 Phys. Rev. Lett. 103 063001 | Spin- Optical Lattice Clock
[16] | K Beloy et al 2014 Phys. Rev. Lett. 113 260801 | Atomic Clock with Room-Temperature Blackbody Stark Uncertainty
[17] | Katori H et al 2015 Phys. Rev. A 91 052503 | Strategies for reducing the light shift in atomic clocks
[18] | Zhang M J et al 2016 Chin. Phys. Lett. 33 070601 | Hertz-Level Clock Spectroscopy of 171 Yb Atoms in a One-Dimensional Optical Lattice
[19] | Zhang M J et al 2014 Chin. Phys. Lett. 31 086701 | Creation of 174 Yb Bose—Einstein Condensates in a Crossed FORT
[20] | Long Y et al 2013 Chin. Phys. Lett. 30 073402 | Observation of Photoassociation Spectra of Ultracold 174 Yb Atoms at 1 S 0 — 3 P 1 Inter-Combination Line
[21] | Blatt S et al 2009 Phys. Rev. A 80 052703 | Rabi spectroscopy and excitation inhomogeneity in a one-dimensional optical lattice clock
[22] | Jiang Y Y et al 2011 Nat. Photon. 5 158 | Making optical atomic clocks more stable with 10−16-level laser stabilization
[23] | Notcutt M et al 2006 Phys. Rev. A 73 031804 | Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers
[24] | Alnis J et al 2008 Phys. Rev. A 77 053809 | Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry-Pérot cavities