$\tau$ | $\frac{\tau_{\rm max}}{{\tau}}$ | $\big[\frac{\tau_{\rm max}}{{\tau}}\big]$ | Expression |
---|---|---|---|
$\tau=6$ | 1.67 | 1 | $f(\tau,t)=g(t)-\tau\frac{Dg}{Dt}$ |
$\tau=4$ | 2.5 | 2 | $f(\tau,t)=g(t)-\tau\frac{Dg}{Dt}+\tau^2\frac{D^2g}{Dt^2}$ |
$\tau=2$ | 5 | 5 | $f(\tau,t)=g(t)-\tau\frac{Dg}{Dt}+\tau^2\frac{D^2g}{Dt^2}$ |
$-\tau^3\frac{D^3g}{Dt^3}+\tau^4\frac{D^4g}{Dt^4}-\tau^5\frac{D^5g}{Dt^5}$ | |||
$\tau=1$ | 10 | 10 | $f(\tau,t)=g(t)-\tau\frac{Dg}{Dt}+\tau^2\frac{D^2g}{Dt^2}$ |
$-\tau^{3}\frac{D^{3}g}{Dt^{3}}+\cdots +\tau^{10}\frac{D^{10}g}{Dt^{10}}$ | |||
$\tau=0.1$ | 100 | 100 | $f(\tau,t)=g(t)-\tau\frac{Dg}{Dt}+\tau^2\frac{D^2g}{Dt^2}$ |
$-\tau^{3}\frac{D^{3}g}{Dt^{3}}+\cdots +\tau^{100}\frac{D^{100}g}{Dt^{100}}$ |
Expansion | Formulation |
---|---|
Chapman–Enskog | $f(t)=\sum \limits_{n=0}^\infty(-1)^n\tau^n\frac{D^n}{Dt^n}g(t)$ |
Modified Chapman–Enskog | $f(\tau,t)=\sum \limits_{n=0}^{[\tau_{\rm max}/{\tau}]}(-1)^n\tau^n\frac{D^n}{Dt^n}g(\tau,t)$ |
[1] | Pitaevskii L P and Lifshitz E M 1981 Physical Kinetics (Oxford: Butterworth-Heinemann) |
[2] | Cercignani C 1988 The Boltzmann Equation and Its Applications (New York: Springer-Verlag) |
[3] | Chapman S and Cowling T G 1990 The Mathematical Theory of Non-uniform Gases (Cambridge: Cambridge University Press) |
[4] | Bhatnagar P L, Gross E P and Krook M 1954 Phys. Rev. 94 511 | A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems
[5] | McLannan A 1965 Phys. Fluids 8 1580 | Convergence of the Chapman-Enskog Expansion for the Linearized Boltzmann Equation
[6] | Santos A, Brey J J and Dufty J W 1986 Phys. Rev. Lett. 56 1571 | Divergence of the Chapman-Enskog Expansion
[7] | Hardy G H and Wright E M 1979 An Introduction to the Theory of Numbers (Oxford: Clarendon) |
[8] | Chen N X 1990 Phys. Rev. Lett. 64 1193 | Modified Möbius inverse formula and its applications in physics
[9] | Maddox J 1990 Nature 344 29 | A gentleman's pursuit
[10] | Chen N X 2010 Möbius Inversion in Physics (Singapore: World Scientific) |