Thick Target Neutron Production on Aluminum and Copper by 40MeV Deuterons

Funds: Supported by the Project of China Academy of Engineering Physics under Grant No 2013B0103015.
  • Received Date: July 16, 2016
  • Published Date: January 31, 2017
  • The thick target neutron yields (TTNYs) of deuteron-induced reaction on Al and Cu isotopes are analyzed by combining the improved nuclear models and particle transport effects. The modified Glauber model is employed mainly to produce the peak of double differential cross section for the breakup process, and the exciton model and the Hauser–Feshbach theory are used for the statistical processes. The thin-layer accumulation method is used to calculate the TTNYs considering the neutron attenuation effects in the target. The calculated results are compared with the existing experimental data, and the analysis method can predict the TTNY data well at the deuteron energy of 40 MeV.
  • Article Text

  • [1]
    Garin P and Sugimoto M 2009 Fusion Eng. Des. 84 259 doi: 10.1016/j.fusengdes.2008.12.040

    CrossRef Google Scholar

    [2]
    Fadil M, Rannou B and the SPIRAL2 project team 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 4318 doi: 10.1016/j.nimb.2008.05.138

    CrossRef Google Scholar

    [3]
    Bem P, Simeckova E, Honusek M, Fischer U, Simakov S, Forrest R, Avrigeanu M, Obreja A, Roman F and Avrigeanu V 2009 Phys. Rev. C 79 044610 doi: 10.1103/PhysRevC.79.044610

    CrossRef Google Scholar

    [4]
    Simeckova E, Bem P, Honusek M, Stefanik M, Fischer U, Simakov S, Forrest R, Koning A, Sublet J, Avrigeanu M, Roman F and Avrigeanu V 2011 Phys. Rev. C 84 014605 doi: 10.1103/PhysRevC.84.014605

    CrossRef Google Scholar

    [5]
    Takacs S, Szelecsenyi F, Tarkanyi F, Sonck M, Hermanne A, Shubin Yu, Dityuk A, Mustafa M and Zhuang Y 2001 Nucl. Instrum. Methods Phys. Res. Sect. B 174 235 doi: 10.1016/S0168-583X0000589-9

    CrossRef Google Scholar

    [6]
    Takacs S, Tarkanyi F, Kiraly B, Hermanne A and Sonck M Y 2006 Nucl. Instrum. Methods Phys. Res. Sect. B 251 56 doi: 10.1016/j.nimb.2006.06.007

    CrossRef Google Scholar

    [7]
    Nakao M, Hori J, Ochiai K, Kubota N, Sato S, Yamauchi M, Ishioka N and Nishitani T 2006 Nucl. Instrum. Methods Phys. Res. Sect. A 562 785 doi: 10.1016/j.nima.2006.02.055

    CrossRef Google Scholar

    [8]
    Shigyo N, Hidaka K, Hirabayashi K, Nakamura Y, Moriguchi D, Kumabe M, Hirano H, Hirayama S, Naitou Y, Motooka C, Lan C, Watanabe T, Watanabe Y, Sagara K, Maebaru S, Sakaki H and Takahash H 2011 J. Korean Phys. Soc. 59 1725 doi: 10.3938/jkps.59.1725

    CrossRef Google Scholar

    [9]
    Serber R 1947 Phys. Rev. 72 1008

    Google Scholar

    [10]
    Glauber R J 1959 Lectures in Theoretical Physics New York: Interscience vol 1 p 315

    Google Scholar

    [11]
    Faddeev L D 1961 Sov. Phys. JETP 12 1014

    Google Scholar

    [12]
    Baur G and Trautmann D 1976 Phys. Rep. 25 293 doi: 10.1016/0370-15737690038-7

    CrossRef Google Scholar

    [13]
    Johnson R C and Soper R 1970 Phys. Rev. C 1 976 doi: 10.1103/PhysRevC.1.976

    CrossRef Google Scholar

    [14]
    Yahiro M, Ogata K, Matsumoto T and Minomo K 2012 Prog. Theor. Exp. Phys. 1A206 and references therein

    Google Scholar

    [15]
    Ogata K, Yahiro M, Iseri Y et al. 2003 Phys. Rev. C 67 011602R doi: 10.1103/PhysRevC.67.011602

    CrossRef Google Scholar

    [16]
    Ye T, Hashimoto S, Watanabe Y, Ogata K and Yahiro M 2011 Phys. Rev. C 84 054606 doi: 10.1103/PhysRevC.84.054606

    CrossRef Google Scholar

    [17]
    Wang J, Ye T, Sun W, Watanabe Y and Ogata K 2011 Chin. Phys. Lett. 28 112401 doi: 10.1088/0256-307X/28/11/112401

    CrossRef Google Scholar

    [18]
    Koning A and Rochman D 2012 Nuclear Data Sheets 113 2841

    Google Scholar

    [19]
    Nakayama S, Kouno H, Watanabe H, Iwamoto O and Ogata K 2016 Phys. Rev. C 94 014618 doi: 10.1103/PhysRevC.94.014618

    CrossRef Google Scholar

    [20]
    Hashimoto S, Iwamoto Y, Sato T, Niita K, Boudard A, Cugnon J, David J and Leray S 2014 Nucl. Instrum. Methods Phys. Res. Sect. B 333 27 doi: 10.1016/j.nimb.2014.04.007

    CrossRef Google Scholar

    [21]
    Lei J and Moro A M 2015 Phys. Rev. C 92 044616 doi: 10.1103/PhysRevC.92.044616

    CrossRef Google Scholar

    [22]
    Potel G, Nunes F M and Thompson I J 2015 Phys. Rev. C 92 034611 doi: 10.1103/PhysRevC.92.034611

    CrossRef Google Scholar

    [23]
    Carlson B V, Capote R and Sin M 2016 Few Body Syst. 57 307 doi: 10.1007/s00601-016-1054-8

    CrossRef Google Scholar

    [24]
    Wei Z, Yan Y, Yao Z, Lan C and Wang J 2013 Phys. Rev. C 87 054605 doi: 10.1103/PhysRevC.87.054605

    CrossRef Google Scholar

    [25]
    Ye T and Watanabe Y 2014 Nucl. Data Sheets 118 308 doi: 10.1016/j.nds.2014.04.066

    CrossRef Google Scholar

    [26]
    Ziegler F, Ziegler M and Biersack J 2010 Nucl. Instrum. Methods Phys. Res. Sect. B 268 1818 doi: 10.1016/j.nimb.2010.02.091

    CrossRef Google Scholar

    [27]
    An H X and Cai C H 2006 Phys. Rev. C 73 054605 doi: 10.1103/PhysRevC.73.054605

    CrossRef Google Scholar

    [28]
    Hagiwara M, Itoga T, Baba M, Uddin M, Hirabayashi N, Oishi T and Yamauchi T 2004 J. Nucl. Mater. 329 218 doi: 10.1016/j.jnucmat.2004.04.026

    CrossRef Google Scholar

    [29]
    Schweimer G et al. 1967 Nucl. Phys. A 100 537 doi: 10.1016/0375-94746790122-4

    CrossRef Google Scholar

Catalog

    Article views (378) PDF downloads (746) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return