CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Compression of Battery X-Ray Tomography Data with Machine Learning |
Zipei Yan1, Qiyu Wang2,3,4, Xiqian Yu2,3,4*, Jizhou Li1,5*, and Michael K.-P. Ng6 |
1Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China 2Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 3Huairou Division, Institute of Physics, Chinese Academy of Sciences, Beijing 101400, China 4Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 5CUHK Shenzhen Research Institute, Shenzhen 518057, China 6Department of Mathematics, Hong Kong Baptist University, Hong Kong, China
|
|
Cite this article: |
Zipei Yan, Qiyu Wang, Xiqian Yu et al 2024 Chin. Phys. Lett. 41 098901 |
|
|
Abstract With the increasing demand for high-resolution x-ray tomography in battery characterization, the challenges of storing, transmitting, and analyzing substantial imaging data necessitate more efficient solutions. Traditional data compression methods struggle to balance reduction ratio and image quality, often failing to preserve critical details for accurate analysis. This study proposes a machine learning-assisted compression method tailored for battery x-ray imaging data. Leveraging physics-informed representation learning, our approach significantly reduces file sizes without sacrificing meaningful information. We validate the method on typical battery materials and different x-ray imaging techniques, demonstrating its effectiveness in preserving structural and chemical details. Experimental results show an up-to-95 compression ratio while maintaining high fidelity in the projection and reconstructed images. The proposed framework provides a promising solution for managing large-scale battery x-ray imaging datasets, facilitating significant advancements in battery research and development.
|
|
Received: 17 June 2024
Editors' Suggestion
Published: 19 September 2024
|
|
|
|
|
|
[1] | Li Q, Yang Y, Yu X, and Li H 2023 Chin. Phys. Lett. 40 048201 |
[2] | Wang Q D, Yao Z P, Wang J L, Guo H, Li C, Zhou D, Bai X, Li H, Li B, Wagemaker M et al. 2024 Nature 629 341 |
[3] | Tan S, Shadike Z, Li J, Wang X, Yang Y, Lin R, Cresce A, Hu J, Hunt A, Waluyo I et al. 2022 Nat. Energy 7 484 |
[4] | Liu Y, Zhu Y, and Cui Y 2019 Nat. Energy 4 540 |
[5] | Wan H, Xu J, and Wang C 2024 Nat. Rev. Chem. 8 30 |
[6] | de Vasconcelos L S, Xu R, Xu Z, Zhang J, Sharma N, Shah S R, Han J, He X, Wu X, Sun H et al. 2022 Chem. Rev. 122 13043 |
[7] | Zhang Y, Li Y, Guo Z, Li J, Ge X, Sun Q, Yan Z, Li Z, and Huang Y 2024 eScience 4 100174 |
[8] | Qian G, Wang J, Li H, Ma Z F, Pianetta P, Li L, Yu X, and Liu Y 2022 Natl. Sci. Rev. 9 nwab146 |
[9] | Ziesche R F, Heenan T M M, Kumari P, Williams J, Li W, Curd M E, Burnett T L, Robinson I, Brett D J, Ehrhardt M J et al. 2023 Adv. Energy Mater. 13 2300103 |
[10] | Yi T, Zhao E, He Y, Liang T, and Wang H 2024 eScience 4 100182 |
[11] | Lin H, Jin Y, Tao M, Zhou Y, Shan P, Zhao D, and Yang Y 2024 Magn. Resonance Lett. 4 200113 |
[12] | Scharf J, Chouchane M, Finegan D P, Lu B, Redquest C, Kim M C, Yao W, Franco A A, Gostovic D, Liu Z et al. 2022 Nat. Nanotechnol. 17 446 |
[13] | Zan G, Pianetta P, and Liu Y 2021 Batteries: Materials Principles and Characterization Methods (Bristol: IOP Publishing) p 3–1 |
[14] | Yu Z, Shan H, Zhong Y, Zhang X, and Hong G 2022 ACS Energy Lett. 7 3151 |
[15] | Meirer F, Cabana J, Liu Y, Mehta A, Andrews J C, and Pianetta P 2011 J. Synchrotron Rad. 18 773 |
[16] | Wang J, Chen-Wiegart Y C K, and Wang J 2014 Nat. Commun. 5 4570 |
[17] | Xue Z, Li J, Pianetta P, and Liu Y 2022 Acc. Mater. Res. 3 854 |
[18] | Ning Y, Yang F, Zhang Y, Qiang Z, Yin G, Wang J, and Lou S 2024 Matter 7 2011 |
[19] | Zhang G X, Song Y, Zhao W, An H, and Wang J 2022 Cell Rep. Phys. Sci. 3 101008 |
[20] | Lombardo T, Duquesnoy M, El-Bouysidy H, Årén F, Gallo-Bueno A, Jørgensen P B, Bhowmik A, Demortière A, Ayerbe E, Alcaide F et al. 2022 Chem. Rev. 122 10899 |
[21] | Finegan D P, Squires I, Dahari A, Kench S, Jungjohann K L, and Cooper S J 2022 ACS Energy Lett. 7 4368 |
[22] | Yang X, Kahnt M, Brückner D, Schropp A, Fam Y, Becher J, Grunwaldt J D, Sheppard T L, and Schroer C G 2020 J. Synchrotron Rad. 27 486 |
[23] | Liu Z, Bicer T, Kettimuthu R, Gursoy D, De Carlo F, and Foster I 2020 J. Opt. Soc. Am. A 37 422 |
[24] | Nikitin V 2023 J. Synchrotron Rad. 30 179 |
[25] | Kench S and Cooper S J 2021 Nat. Mach. Intell. 3 299 |
[26] | Li J, Chen B, Zan G, Qian G, Pianetta P, and Liu Y 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4–10 June 2023, Rhodes Island, Greece pp 1–5 |
[27] | Wang T, Wu X, Li J, and Wang C 2023 Opt. Express 31 42524 |
[28] | Jiang Z S, Li J Z, Yang Y, Mu L, Wei C, Yu X, Pianetta P, Zhao K, Cloetens P, Lin F et al. 2020 Nat. Commun. 11 2310 |
[29] | Li J, Sharma N, Jiang Z, Yang Y, Monaco F, Xu Z, Hou D, Ratner D, Pianetta P, Cloetens P et al. 2022 Science 376 517 |
[30] | Yang Y B, Mandt S, Theis L et al. 2023 Foundations and Trends$^{\circledR}$ in Computer Graphics and Vision 15 113 |
[31] | Sitzmann V, Martel J, Bergman A, Lindell D, and Wetzstein G 2020 NIPS'20: Proceedings of the 34th International Conference on Neural Information Processing Systems (New York: Curran Associates Inc.) Art. No. 62, pp 7462–7473 |
[32] | Tancik M, Srinivasan P, Mildenhall B, Fridovich-Keil S, Raghavan N, Singhal U, Ramamoorthi R, Barron J, and Ng R 2020 NIPS'20: Proceedings of the 34th International Conference on Neural Information Processing Systems (New York: Curran Associates Inc.) Art. No. 632, pp 7537–7547 |
[33] | Chen H, He B, Wang H, Ren Y, Lim S N, and Shrivastava A 2021 NIPS'21: Proceedings of the 35th International Conference on Neural Information Processing Systems (New York: Curran Associates Inc.) Art. No. 1649, pp 21557–21568 |
[34] | Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser L, and Polosukhin I 2017 NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems (New York: Curran Associates Inc.) pp 6000–6010 |
[35] | De Carlo F, Gürsoy D, Ching D J et al. 2018 Meas. Sci. Technol. 29 034004 |
[36] | Liu Y, Meirer F, Williams P A, Wang J, Andrews J C, and Pianetta P 2012 J. Synchrotron Rad. 19 281 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|