Chin. Phys. Lett.  2024, Vol. 41 Issue (9): 098901    DOI: 10.1088/0256-307X/41/9/098901
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Compression of Battery X-Ray Tomography Data with Machine Learning
Zipei Yan1, Qiyu Wang2,3,4, Xiqian Yu2,3,4*, Jizhou Li1,5*, and Michael K.-P. Ng6
1Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China
2Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3Huairou Division, Institute of Physics, Chinese Academy of Sciences, Beijing 101400, China
4Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
5CUHK Shenzhen Research Institute, Shenzhen 518057, China
6Department of Mathematics, Hong Kong Baptist University, Hong Kong, China
Cite this article:   
Zipei Yan, Qiyu Wang, Xiqian Yu et al  2024 Chin. Phys. Lett. 41 098901
Download: PDF(5255KB)   PDF(mobile)(5142KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract With the increasing demand for high-resolution x-ray tomography in battery characterization, the challenges of storing, transmitting, and analyzing substantial imaging data necessitate more efficient solutions. Traditional data compression methods struggle to balance reduction ratio and image quality, often failing to preserve critical details for accurate analysis. This study proposes a machine learning-assisted compression method tailored for battery x-ray imaging data. Leveraging physics-informed representation learning, our approach significantly reduces file sizes without sacrificing meaningful information. We validate the method on typical battery materials and different x-ray imaging techniques, demonstrating its effectiveness in preserving structural and chemical details. Experimental results show an up-to-95 compression ratio while maintaining high fidelity in the projection and reconstructed images. The proposed framework provides a promising solution for managing large-scale battery x-ray imaging datasets, facilitating significant advancements in battery research and development.
Received: 17 June 2024      Editors' Suggestion Published: 19 September 2024
PACS:  89.20.Ff (Computer science and technology)  
  07.85.Tt (X-ray microscopes)  
  82.47.Aa (Lithium-ion batteries)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/9/098901       OR      https://cpl.iphy.ac.cn/Y2024/V41/I9/098901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zipei Yan
Qiyu Wang
Xiqian Yu
Jizhou Li
and Michael K.-P. Ng
[1] Li Q, Yang Y, Yu X, and Li H 2023 Chin. Phys. Lett. 40 048201
[2] Wang Q D, Yao Z P, Wang J L, Guo H, Li C, Zhou D, Bai X, Li H, Li B, Wagemaker M et al. 2024 Nature 629 341
[3] Tan S, Shadike Z, Li J, Wang X, Yang Y, Lin R, Cresce A, Hu J, Hunt A, Waluyo I et al. 2022 Nat. Energy 7 484
[4] Liu Y, Zhu Y, and Cui Y 2019 Nat. Energy 4 540
[5] Wan H, Xu J, and Wang C 2024 Nat. Rev. Chem. 8 30
[6] de Vasconcelos L S, Xu R, Xu Z, Zhang J, Sharma N, Shah S R, Han J, He X, Wu X, Sun H et al. 2022 Chem. Rev. 122 13043
[7] Zhang Y, Li Y, Guo Z, Li J, Ge X, Sun Q, Yan Z, Li Z, and Huang Y 2024 eScience 4 100174
[8] Qian G, Wang J, Li H, Ma Z F, Pianetta P, Li L, Yu X, and Liu Y 2022 Natl. Sci. Rev. 9 nwab146
[9] Ziesche R F, Heenan T M M, Kumari P, Williams J, Li W, Curd M E, Burnett T L, Robinson I, Brett D J, Ehrhardt M J et al. 2023 Adv. Energy Mater. 13 2300103
[10] Yi T, Zhao E, He Y, Liang T, and Wang H 2024 eScience 4 100182
[11] Lin H, Jin Y, Tao M, Zhou Y, Shan P, Zhao D, and Yang Y 2024 Magn. Resonance Lett. 4 200113
[12] Scharf J, Chouchane M, Finegan D P, Lu B, Redquest C, Kim M C, Yao W, Franco A A, Gostovic D, Liu Z et al. 2022 Nat. Nanotechnol. 17 446
[13]Zan G, Pianetta P, and Liu Y 2021 Batteries: Materials Principles and Characterization Methods (Bristol: IOP Publishing) p 3–1
[14] Yu Z, Shan H, Zhong Y, Zhang X, and Hong G 2022 ACS Energy Lett. 7 3151
[15] Meirer F, Cabana J, Liu Y, Mehta A, Andrews J C, and Pianetta P 2011 J. Synchrotron Rad. 18 773
[16] Wang J, Chen-Wiegart Y C K, and Wang J 2014 Nat. Commun. 5 4570
[17] Xue Z, Li J, Pianetta P, and Liu Y 2022 Acc. Mater. Res. 3 854
[18] Ning Y, Yang F, Zhang Y, Qiang Z, Yin G, Wang J, and Lou S 2024 Matter 7 2011
[19] Zhang G X, Song Y, Zhao W, An H, and Wang J 2022 Cell Rep. Phys. Sci. 3 101008
[20] Lombardo T, Duquesnoy M, El-Bouysidy H, Årén F, Gallo-Bueno A, Jørgensen P B, Bhowmik A, Demortière A, Ayerbe E, Alcaide F et al. 2022 Chem. Rev. 122 10899
[21] Finegan D P, Squires I, Dahari A, Kench S, Jungjohann K L, and Cooper S J 2022 ACS Energy Lett. 7 4368
[22] Yang X, Kahnt M, Brückner D, Schropp A, Fam Y, Becher J, Grunwaldt J D, Sheppard T L, and Schroer C G 2020 J. Synchrotron Rad. 27 486
[23] Liu Z, Bicer T, Kettimuthu R, Gursoy D, De Carlo F, and Foster I 2020 J. Opt. Soc. Am. A 37 422
[24] Nikitin V 2023 J. Synchrotron Rad. 30 179
[25] Kench S and Cooper S J 2021 Nat. Mach. Intell. 3 299
[26] Li J, Chen B, Zan G, Qian G, Pianetta P, and Liu Y 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 4–10 June 2023, Rhodes Island, Greece pp 1–5
[27] Wang T, Wu X, Li J, and Wang C 2023 Opt. Express 31 42524
[28] Jiang Z S, Li J Z, Yang Y, Mu L, Wei C, Yu X, Pianetta P, Zhao K, Cloetens P, Lin F et al. 2020 Nat. Commun. 11 2310
[29] Li J, Sharma N, Jiang Z, Yang Y, Monaco F, Xu Z, Hou D, Ratner D, Pianetta P, Cloetens P et al. 2022 Science 376 517
[30] Yang Y B, Mandt S, Theis L et al. 2023 Foundations and Trends$^{\circledR}$ in Computer Graphics and Vision 15 113
[31]Sitzmann V, Martel J, Bergman A, Lindell D, and Wetzstein G 2020 NIPS'20: Proceedings of the 34th International Conference on Neural Information Processing Systems (New York: Curran Associates Inc.) Art. No. 62, pp 7462–7473
[32]Tancik M, Srinivasan P, Mildenhall B, Fridovich-Keil S, Raghavan N, Singhal U, Ramamoorthi R, Barron J, and Ng R 2020 NIPS'20: Proceedings of the 34th International Conference on Neural Information Processing Systems (New York: Curran Associates Inc.) Art. No. 632, pp 7537–7547
[33]Chen H, He B, Wang H, Ren Y, Lim S N, and Shrivastava A 2021 NIPS'21: Proceedings of the 35th International Conference on Neural Information Processing Systems (New York: Curran Associates Inc.) Art. No. 1649, pp 21557–21568
[34]Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser L, and Polosukhin I 2017 NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems (New York: Curran Associates Inc.) pp 6000–6010
[35] De Carlo F, Gürsoy D, Ching D J et al. 2018 Meas. Sci. Technol. 29 034004
[36] Liu Y, Meirer F, Williams P A, Wang J, Andrews J C, and Pianetta P 2012 J. Synchrotron Rad. 19 281
Related articles from Frontiers Journals
[1] Wen-Jia Rao. Machine Learning for Many-Body Localization Transition[J]. Chin. Phys. Lett., 2020, 37(8): 098901
[2] Tang-Shi Yao, Cen-Yao Tang, Meng Yang, Ke-Jia Zhu, Da-Yu Yan, Chang-Jiang Yi, Zi-Li Feng, He-Chang Lei, Cheng-He Li, Le Wang, Lei Wang, You-Guo Shi, Yu-Jie Sun, Hong Ding. Machine Learning to Instruct Single Crystal Growth by Flux Method[J]. Chin. Phys. Lett., 2019, 36(6): 098901
[3] Jin-Fa Wang, Xiao Liu, Hai Zhao, Xing-Chi Chen. Anomaly Detection of Complex Networks Based on Intuitionistic Fuzzy Set Ensemble[J]. Chin. Phys. Lett., 2018, 35(5): 098901
[4] ZHAO Dan-Dan, ZENG An, SHANG Ming-Sheng, GAO Jian. Long-Term Effects of Recommendation on the Evolution of Online Systems[J]. Chin. Phys. Lett., 2013, 30(11): 098901
[5] LI Lin, PENG Hao, LU Song-Nian, TIAN Ying. A Micro-Community Structure Merging Model Using a Community Sample Matrix[J]. Chin. Phys. Lett., 2013, 30(1): 098901
[6] CHEN Duan-Bing**,GAO Hui. An Improved Adaptive model for Information Recommending and Spreading[J]. Chin. Phys. Lett., 2012, 29(4): 098901
[7] ZHAO Zhi-Dan, XIA Hu, SHANG Ming-Sheng**, ZHOU Tao, . Empirical Analysis on the Human Dynamics of a Large-Scale Short Message Communication System[J]. Chin. Phys. Lett., 2011, 28(6): 098901
[8] SHANG Ming-Sheng, ZHANG Zi-Ke. Diffusion-Based Recommendation in Collaborative Tagging Systems[J]. Chin. Phys. Lett., 2009, 26(11): 098901
[9] ZHENG Xiao-Juan, FANG Mao-Fa, XU Hui,. A Simple Scheme for Two-Qubit Grover Search in Hot Trapped Ions[J]. Chin. Phys. Lett., 2009, 26(11): 098901
[10] ZHONG Pu-Cha, BAO Wan-Su, WEI Yun. Quantum Partial Searching Algorithm of a Database with Several Target Items[J]. Chin. Phys. Lett., 2009, 26(2): 098901
[11] ZHONG Pu-Cha, BAO Wan-Su. Research on Quantum Searching Algorithms Based on Phase Shifts[J]. Chin. Phys. Lett., 2008, 25(8): 098901
[12] QIN Tao, GAO Ke-Lin. A Robust Scheme for Two-Qubit Grover Quantum Search Alogrithm Based on the Motional and Internal States of a Single Cold Trapped Ion[J]. Chin. Phys. Lett., 2003, 20(11): 098901
Viewed
Full text


Abstract