Chin. Phys. Lett.  2024, Vol. 41 Issue (9): 094202    DOI: 10.1088/0256-307X/41/9/094202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Mode Multiplication of Cylindrical Vector Beam Using Raytracing Control
Jing Wang1†, Qingji Zeng1†, Haisheng Wu1, Chuangxin Xie1, Huapeng Ye2, Ze Dong3, Dianyuan Fan1*, and Shuqing Chen1*
1Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
2Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, and Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
3School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China
Cite this article:   
Jing Wang, Qingji Zeng, Haisheng Wu et al  2024 Chin. Phys. Lett. 41 094202
Download: PDF(3572KB)   PDF(mobile)(3647KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Cylindrical vector beams (CVBs) hold significant promise in mode division multiplexing communication owing to their inherent vector mode orthogonality. However, existing studies for facilitating CVB channel processing are confined to mode shift conversions due to their reliance on spin-dependent helical modulations, overlooking the pursuit of mode multiplication conversion. This challenge lies in the multiplicative operation upon inhomogeneous vector mode manipulation, which is expected to advance versatile CVB channel switching and routing. Here, we tackle this gap by introducing a raytracing control strategy that conformally maps the light rays of CVB from the whole annulus distribution to an annular sector counterpart. Incorporated with the multifold conformal annulus-sector mappings and polarization-insensitive phase modulations, this approach facilitates the parallel transformation of input CVB into multiple complementary components, enabling the mode multiplication conversion with protected vector structure. Serving as a demonstration, we experimentally implemented the multiplicative operation of four CVB modes with the multiplier factors of $N=+2$ and $N=-3$, achieving the converted mode purities over 94.24% and 88.37%. Subsequently, 200 Gbit/s quadrature phase shift keying signals were successfully transmitted upon multiplicative switching of four CVB channels, with the bit-error-rate approaching $1\times 10^{-6}$. These results underscore our strategy's efficacy in CVB mode multiplication, which may open promising prospects for its advanced applications.
Received: 17 June 2024      Published: 13 September 2024
PACS:  42.15.Dp (Wave fronts and ray tracing)  
  42.15.-i (Geometrical optics)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/9/094202       OR      https://cpl.iphy.ac.cn/Y2024/V41/I9/094202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jing Wang
Qingji Zeng
Haisheng Wu
Chuangxin Xie
Huapeng Ye
Ze Dong
Dianyuan Fan
and Shuqing Chen
[1] Yu Y, Xu M, Pu M, Ding J, Chen S, Zhang Y, Zhou M, Guo Y, Li X, Ma X, and Luo X 2023 Opt. Express 31 42165
[2] Zhang Y H, Liu S J, Chen P, Zhu D, Chen W, Ge S J, Wang Y, Zhang Z F, and Lu Y Q 2024 Nat. Commun. 15 1108
[3] Shen Y, Zhang Q, Shi P, Du L, Yuan X, and Zayats A V 2024 Nat. Photonics 18 15
[4] He C, Shen Y, and Forbes A 2022 Light: Sci. & Appl. 11 205
[5] Wan Z, Wang H, Liu Q, Fu X, and Shen Y 2023 ACS Photonics 10 2149
[6] He Y, Wang X, Yang B, Cheng M, Xie Z, Wang P, Ye H, Liu J, Li Y, Yang Y, Fan D, and Chen S 2022 J. Lightwave Technol. 40 5070
[7] Chen S, Xie Z, Ye H, Wang X, Guo Z, He Y, Li Y, Yuan X, and Fan D 2021 Light: Sci. & Appl. 10 222
[8] Jia Q, Zhang Y X, Shi B J, Li H, Li X X, Feng R, Sun F K, Cao Y Y, Wang J, Qiu C W, and Ding W Q 2023 Nanophotonics 12 3955
[9] Zhou C, Liang W, Xie Z, Ma J, Yang H, Yang X, Hu Y, Duan H, and Yuan X 2024 Nat. Commun. 15 4022
[10] He Y, Huang Z, Li C, Yang B, Xie Z, Wu H, Wang P, Li Y, Yang Y, Fan D, and Chen S 2022 Opt. Lett. 47 6341
[11] Ahmed N, Huang H, Ren Y, Yan Y, Xie G, Tur M, and Willner A E 2014 Opt. Express 22 756
[12] Liu J and Wang J 2016 Sci. Rep. 6 37331
[13] Lei T, Gao S, Li Z, Yuan Y, Li Y, Zhang M, Liu G N, Xu X, Tian J, and Yuan X 2017 IEEE Photonics J. 9 7901409
[14] Hua Y L, Wang Z Q, Li H L, Gao N, and Du Y C 2012 Chin. Phys. Lett. 29 084214
[15] Nazemosadat E, Mazur M, Kruk S, Kravchenko I, Carpenter J, Schröder J, Andrekson P A, Karlsson M, and Kivshar Y 2019 Adv. Opt. Mater. 7 1801679
[16] Fang B, Wang Z, Li Y, Ji J, Xi K, Cheng Q, Shu F, Jin Z, Hong Z, Zhan C, Shen C, and Li T 2023 Photonics Res. 11 2194
[17] Guo Y H, Zhang S C, Pu M B, He Q, Jin J J, Xu M F, Zhang Y X, Gao P, and Luo X G 2021 Light: Sci. & Appl. 10 63
[18] Qiu Y, Tang S, Cai T, Xu H, and Ding F 2021 Front. Optoelectron. 14 134
[19] Kostyuk G, Shkuratova V, Petrov A, Stepanyuk D, and Zakoldaev R 2023 Opt. Quantum Electron. 55 344
[20] Liu X, Zhou J, Xue J, and Meng Z 2022 Laser Phys. 32 035402
[21] Brandt F, Hiekkamäki M, Bouchard F, Huber M, and Fickler R 2020 Optica 7 98
[22] Shen D, He T, Yu X, and Zhao D 2022 IEEE Photonics J. 14 1
[23] Ayoub A B and Psaltis D 2021 Sci. Rep. 11 18837
[24] Ruffato G and Kobayashi H 2021 Opt. Commun. 490 126893
[25] Cheng J, Wan C, and Zhan Q 2023 Opt. Lett. 48 1762
[26] Yao Q, Cheng J, Liu W, and Wan C 2024 Opt. Lett. 49 81
[27] Wang B, Wu L, Lin Z, Zhong W, Zhu Z, and Chen Y 2024 Laser Photon. Rev. 2400113
[28] Zeng Z, Pang Z, Pan K, Xu J, and Zhao D 2023 Photonics Res. 11 165
[29] Ruffato G, Massari M, and Romanato F 2019 Light: Sci. & Appl. 8 113
[30] Cao H, Liang Y, Wang L, Ruan Z, Wang H, Zeng J, and Wang J 2023 Laser & Photonics Rev. 17 2200631
[31] Yao Q, Liu W, Cheng J, Liang Q, and Wan C 2024 ACS Photonics 11 2459
[32] Zheng S, Li Y, Lin Q, Zeng X, Zheng G, Cai Y, Chen Z, Xu S, and Fan D 2018 Photonics Res. 6 385
[33] Lin Z, Xie Z, He Y, Wang X, Wu H, Wang S, Guan Z, Liu J, Ye H, Li Y, Fan D, and Chen S 2021 Opt. Lett. 46 5563
[34] Bryngdahl O 1974 J. Opt. Soc. Am. 64 1092
[35] Hossack W J, Darling A M, and Dahdouh A 1987 J. Mod. Opt. 34 1235
[36] Wang H, Zhang W, Ladika D, Yu H Y, Gailevičius D, Wang H T, Pan C F, Nair P N S, Ke Y J, Mori T, Chan J Y E, Ruan Q F, Farsari M, Malinauskas M, Juodkazis S, Gu M, and Yang J K W 2023 Adv. Funct. Mater. 33 2214211
[37] Goi E, Schoenhardt S, and Gu M 2022 Nat. Commun. 13 7531
[38] Cheng J and Wan C 2023 Opt. Lett. 48 6124
Related articles from Frontiers Journals
[1] Song Wang, Lei Wang, Furong Zhang, and Ling-Jun Kong. Optimization of Light Field for Generation of Vortex Knot[J]. Chin. Phys. Lett., 2022, 39(10): 094202
[2] Xinghong Zhu, Pengfei Zhao, and Huanyang Chen. Multi-Core Conformal Lenses[J]. Chin. Phys. Lett., 2020, 37(8): 094202
[3] Shuai Li, Ya-Ding Guo, Zhong-Zheng Chen, Lin Zhang, Ke-Ling Gong, Zhi-Feng Zhang, Bao-Shan Wang, Jian Xu, Yi-Ting Xu, Lei Yuan, Yang Kou, Yang Liu, Yan-Yong Lin, Qin-Jun Peng, Zu-Yan Xu. The 10kW Level High Brightness Face-Pumped Slab Nd:YAG Amplifier with a Hybrid Cooling System[J]. Chin. Phys. Lett., 2019, 36(4): 094202
[4] Hao Shi, Jie Ma, Xiao-Feng Li, Jie Liu, Shou-Gang Zhang. Simulation and Design of Fluorescence Collector[J]. Chin. Phys. Lett., 2016, 33(09): 094202
[5] A. Yildirim, A. Gökdoğan, M. Merdan, V. Lakshminarayanan. Numerical Approximations to the Solution of Ray Tracing through the Crystalline Lens[J]. Chin. Phys. Lett., 2012, 29(7): 094202
[6] LI Dong-Hua, PU Ji-Xiong, WANG Xi-Qing. Optical Torque Exerted on a Rotator under Illumination of a Vortex Beam[J]. Chin. Phys. Lett., 2012, 29(6): 094202
[7] CHEN Lun-Jin, ZHENG Hui-Nan, XIAO Fu-Liang, WANG Shui. Effects of Spatial Variation of Thermal Electrons on Whistler-Mode Waves in Magnetosphere[J]. Chin. Phys. Lett., 2006, 23(9): 094202
[8] YANG Qing-Guo, SUN Jian-Feng, LIU Li-Ren. Phase-Space Analysis of Wavefront Coding Imaging Systems[J]. Chin. Phys. Lett., 2006, 23(8): 094202
[9] SUN Xiao-Hong, MA Hui, MING Hai, ZHENG Zhi-Qiang, YANG Ji-Wen, ZHANG Yong-Sheng, XIE Jian-Ping. Experimental and Theoretical Analysis of Gradient-Index Lens Diffraction by Matrix Optics[J]. Chin. Phys. Lett., 2003, 20(3): 094202
Viewed
Full text


Abstract