CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Prospect of Hexagonal CsMg(I$_{1-x}$Br$_{x}$)$_{3}$ Alloys for Deep-Ultraviolet Light Emission |
Siyuan Xu1, Zheng Liu2, Xun Xu2, Su-Huai Wei2, Yuzheng Guo1*, and Xie Zhang3* |
1School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China 2Beijing Computational Science Research Center, Beijing 100193, China 3School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
|
|
Cite this article: |
Siyuan Xu, Zheng Liu, Xun Xu et al 2024 Chin. Phys. Lett. 41 096101 |
|
|
Abstract Materials for deep-ultraviolet (DUV) light emission are extremely rare, significantly limiting the development of efficient DUV light-emitting diodes. Here we report CsMg(I$_{1-x}$Br$_{x}$)$_{3}$ alloys as potential DUV light emitters. Based on rigorous first-principles hybrid functional calculations, we find that CsMgI$_{3}$ has an indirect bandgap, while CsMgBr$_{3}$ has a direct bandgap. Further, we employ a band unfolding technique for alloy supercell calculations to investigate the critical Br concentration in CsMg(I$_{1-x}$Br$_{x}$)$_{3}$ associated with the crossover from an indirect to a direct bandgap, which is found to be $\sim$ 0.36. Thus, CsMg(I$_{1-x}$Br$_{x})_{3}$ alloys with $0.36\leqslant x\leqslant 1$ cover a wide range of direct bandgap (4.38–5.37 eV; 284–231 nm), falling well into the DUV regime. Our study will guide the development of efficient DUV light emitters.
|
|
Received: 06 June 2024
Published: 24 September 2024
|
|
PACS: |
61.82.Fk
|
(Semiconductors)
|
|
61.66.Dk
|
(Alloys )
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
95.85.Mt
|
(Ultraviolet (10-300 nm))
|
|
|
|
|
[1] | Hirayama H, Maeda N, Fujikawa S, Toyoda S, and Kamata N 2014 Jpn. J. Appl. Phys. 53 100209 |
[2] | Kneissl M, Seong T Y, Han J, and Amano H 2019 Nat. Photonics 13 233 |
[3] | Shur M S and Gaska R 2010 IEEE Trans. Electron Devices 57 12 |
[4] | Wang G S, Lu H, Xie F, Chen D J, Ren F F, Zhang R, and Zheng Y D 2012 Chin. Phys. Lett. 29 097302 |
[5] | Yu H P, Li S B, Zhang P, Wu S H, Wei X B, Wu Z M, and Chen Z 2014 Chin. Phys. Lett. 31 108502 |
[6] | Xu X, Liang H P, Huang Q S, Liu Z, Zhao B Q, Xu S Y, Li C N, Zhou Z K, Li J, Wei S H, and Zhang X 2024 J. Am. Chem. Soc. 146 12864 |
[7] | Liu B T, Ma P, Li X L, Wang J X, and Li J M 2017 Chin. Phys. Lett. 34 058101 |
[8] | Hsu T C, Teng Y T, Yeh Y W, Fan X, Chu K H, Lin S H, Yeh K K, Lee P T, Lin Y, Chen Z, Wu T, and Kuo H C 2021 Photonics 8 196 |
[9] | Chang C E and Wilcox W R 1974 J. Cryst. Growth 21 135 |
[10] | Nicoarǎ D and Nicoarǎ I 1988 Mater. Sci. Eng. A 102 L1 |
[11] | Yang C C and Tan C S 2023 J. Phys. Chem. C 127 16110 |
[12] | McPherson G L, Gharavi A, and Meyerson S L 1992 Chem. Phys. 165 361 |
[13] | Suta M, Lavoie-Cardinal F, Olchowka J, and Wickleder C 2018 Phys. Rev. Appl. 9 064024 |
[14] | Muscat J, Wander A, and Harrison N M 2001 Chem. Phys. Lett. 342 397 |
[15] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 |
[16] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[17] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[18] | McPherson G L, Kistenmacher T J, and Stucky G D 1970 J. Chem. Phys. 52 815 |
[19] | McPherson G L, McPherson A M, and Atwood J L 1980 J. Phys. Chem. Solids 41 495 |
[20] | Wei S H, Ferreira L G, Bernard J E, and Zunger A 1990 Phys. Rev. B 42 9622 |
[21] | Zunger A, Wei S H, Ferreira L G, and Bernard J E 1990 Phys. Rev. Lett. 65 353 |
[22] | Popescu V and Zunger A 2010 Phys. Rev. Lett. 104 236403 |
[23] | Popescu V and Zunger A 2012 Phys. Rev. B 85 085201 |
[24] | Shen J X, Wickramaratne D, and Van de Walle C G 2017 Phys. Rev. Mater. 1 065001 |
[25] | Turiansky M E, Shen J X, Wickramaratne D, and Van de Walle C G 2019 J. Appl. Phys. 126 095706 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|