Chin. Phys. Lett.  2024, Vol. 41 Issue (9): 091201    DOI: 10.1088/0256-307X/41/9/091201
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
$P_{c}(4457)$ Interpreted as a $J^{P}=1/2^{+}$ State by $\bar{D}^{0}\varLambda^{+}_{c}(2595)-\pi^0 P_{c}(4312)$ Interaction
Jin-Zi Wu1,2, Jin-Yi Pang3*, and Jia-Jun Wu1,4*
1School of Physics Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
2Columbian College of Arts & Sciences, George Washington University, 801 22nd St. NW Washington DC 20052, USA
3College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
4Southern Center for Nuclear-Science Theory, Institute of Modern Physics, Chinese Academy of Sciences, Huizhou 516000, China
Cite this article:   
Jin-Zi Wu, Jin-Yi Pang, and Jia-Jun Wu 2024 Chin. Phys. Lett. 41 091201
Download: PDF(485KB)   PDF(mobile)(509KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract $P_c(4457)$ has been discovered over five years, but the parity of this particle remains undetermined. We propose a new interpretation for $P_c(4457)$, which is the state generated from the coupled-channel $\bar{D}^0\varLambda_c^{+}(2595)$ and $\pi^0 P_c(4312)$ since they can exchange an almost on-shell $\varSigma_c^+$. In this scenario, the parity of $P_c(4457)$ will be positive, which is different from the candidate of the bound state of $\bar{D}^*\varSigma_c$. The main decay channel of $P_c(4457)$ in this model is $P_c(4312)\pi$. We propose three processes $\varLambda_b^0 \to J/\psi K_s p \pi^-$, $\varLambda_b^0 \to J/\psi K^- p \pi^0$, and $\varLambda_b^0 \to J/\psi p \pi^- \pi^+ K^-$ to verify $P_c(4457)\to P_c(4312)\pi$.
Received: 11 June 2024      Published: 02 September 2024
PACS:  12.39.-x (Phenomenological quark models)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/9/091201       OR      https://cpl.iphy.ac.cn/Y2024/V41/I9/091201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jin-Zi Wu
Jin-Yi Pang
and Jia-Jun Wu
[1] Aaij R et al. 2015 Phys. Rev. Lett. 115 072001
[2] Aaij R, Adeva B, Adinolfi M et al. 2016 Chin. Phys. C 40 011001
[3] Aaij R et al. 2016 Phys. Rev. Lett. 117 082002
[4] Aaij R et al. 2016 Phys. Rev. Lett. 117 082003
[5] Aaij R et al. 2019 Phys. Rev. Lett. 122 222001
[6] Roca L and Oset E 2016 Eur. Phys. J. C 76 591
[7] Aaij R et al. 2022 Phys. Rev. Lett. 128 062001
[8] Wu J J, Molina R, Oset E, and Zou B S 2010 Phys. Rev. Lett. 105 232001
[9] Wu J J, Molina R, Oset E, and Zou B S 2011 Phys. Rev. C 84 015202
[10] Wang W L, Huang F, Zhang Z Y, and Zou B S 2011 Phys. Rev. C 84 015203
[11] Yang Z C, Sun Z F, He J, Liu X, and Zhu S L 2012 Chin. Phys. C 36 6
[12] Yuan S G, Wei K W, He J, Xu H S, and Zou B S 2012 Eur. Phys. J. A 48 61
[13] Wu J J, Lee T S H, and Zou B S 2012 Phys. Rev. C 85 044002
[14] García-Recio C, Nieves J, Romanets O, Salcedo L L, and Tolos L 2013 Phys. Rev. D 87 074034
[15] Xiao C W, Nieves J, and Oset E 2013 Phys. Rev. D 88 056012
[16] Uchino T, Liang W H, and Oset E 2016 Eur. Phys. J. A 52 43
[17] Karliner M and Rosner J L 2015 Phys. Rev. Lett. 115 122001
[18] Chen H X, Chen W, Liu X, and Zhu S L 2016 Phys. Rep. 639 1
[19] Hosaka A, Iijima T, Miyabayashi K, Sakai Y, and Yasui S 2016 Prog. Theor. Exp. Phys. 2016 062C01
[20] Chen H X, Chen W, Liu X, Liu Y R, and Zhu S L 2017 Rep. Prog. Phys. 80 076201
[21] Lebed R F, Mitchell R E, and Swanson E S 2017 Prog. Part. Nucl. Phys. 93 143
[22] Esposito A, Pilloni A, and Polosa A D 2017 Phys. Rep. 668 1
[23] Guo F K, Hanhart C, Meißner U G, Wang Q, Zhao Q, and Zou B S 2018 Rev. Mod. Phys. 90 015004 [Erratum: 2022 Rev. Mod. Phys. 94 029901]
[24] Ali A, Lange J S, and Stone S 2017 Prog. Part. Nucl. Phys. 97 123
[25] Olsen S L, Skwarnicki T, and Zieminska D 2018 Rev. Mod. Phys. 90 015003
[26] Karliner M, Rosner J L, and Skwarnicki T 2018 Annu. Rev. Nucl. Part. Sci. 68 17
[27] Yuan C Z 2018 Int. J. Mod. Phys. A 33 1830018
[28] Liu Y R, Chen H X, Chen W, Liu X, and Zhu S L 2019 Prog. Part. Nucl. Phys. 107 237
[29] Brambilla N, Eidelman S, Hanhart C, Nefediev A, Shen C P, Thomas C E, Vairo A, and Yuan C Z 2020 Phys. Rep. 873 1
[30] Guo F K, Liu X H, and Sakai S 2020 Prog. Part. Nucl. Phys. 112 103757
[31] Yao D L, Dai L Y, Zheng H Q, and Zhou Z Y 2021 Rep. Prog. Phys. 84 076201
[32] Barabanov Yu M, Bedolla M A, Brooks W K et al. 2021 Prog. Part. Nucl. Phys. 116 103835
[33] Chen H X, Chen W, Liu X, Liu Y R, and Zhu S L 2023 Rep. Prog. Phys. 86 026201
[34] Huang H X, Deng C R, Liu X J, Tan Y, and Ping J L 2023 Symmetry 15 1298
[35] Ortega P G, Entem D R, and Fernández F 2017 Phys. Lett. B 764 207
[36] Azizi K, Sarac Y, and Sundu H 2017 Phys. Rev. D 95 094016
[37] Geng L S, Lu J X, and Valderrama M P 2018 Phys. Rev. D 97 094036
[38] Burns T J and Swanson E S 2019 Phys. Rev. D 100 114033
[39] Yalikun N, Lin Y H, Guo F K, Kamiya Y, and Zou B S 2021 Phys. Rev. D 104 094039
[40] Yamaguchi Y, Ohkoda S, Yasui S, and Hosaka A 2013 Phys. Rev. D 87 074019
[41] Dong X K, Guo F K, and Zou B S 2021 Phys. Rev. Lett. 126 152001
[42] Dai L R, Song J, and Oset E 2023 Phys. Lett. B 846 138200
[43] Zhang Z H and Guo F K 2024 arXiv:2407.10620 [hep-ph]
[44] Song J, Dai L R, and Oset E 2023 Phys. Rev. D 108 114017
[45] Nakamura K and (Particle Data Group) 2010 J. Phys. G 37 075021
[46] Weinberg S 1965 Phys. Rev. 137 B672
[47] Baru V, Haidenbauer J, Hanhart C, Kalashnikova Y, and Kudryavtsev A 2004 Phys. Lett. B 586 53
[48] Lin Y H, Shen C W, Guo F K, and Zou B S 2017 Phys. Rev. D 95 114017
[49] Ling X Z, Lu J X, Liu M Z, and Geng L S 2021 Phys. Rev. D 104 074022
Related articles from Frontiers Journals
[1] Jean-Marc Richard. Bound and Resonating Multiquark Configurations[J]. Chin. Phys. Lett., 2024, 41(8): 091201
[2] Zhenyu Zhang, Rui Ma, Jifeng Hu, and Qian Wang. Approach the Gell-Mann–Okubo Formula with Machine Learning[J]. Chin. Phys. Lett., 2022, 39(11): 091201
[3] XU Shu-Sheng, JIANG Yu, SHI Chao, CUI Zhu-Fang, ZONG Hong-Shi. A Model-Independent Discussion of Quark Number Density and Quark Condensate at Zero Temperature and Finite Quark Chemical Potential[J]. Chin. Phys. Lett., 2015, 32(12): 091201
[4] XU Shu-Sheng, SHI Yuan-Mei, YANG You-Chang, CUI Zhu-Fang, ZONG Hong-Shi. Discussion of Various Susceptibilities within Thermal and Dense Quantum Chromodynamics[J]. Chin. Phys. Lett., 2015, 32(12): 091201
[5] TIAN Ya-Lan, CUI Zhu-Fang, WANG Bin, SHI Yuan-Mei, YANG You-Chang, ZONG Hong-Shi. Dyson–Schwinger Equations of Chiral Chemical Potential[J]. Chin. Phys. Lett., 2015, 32(08): 091201
[6] JIANG Yu, HOU Feng-Yao, LUO Cui-Bai, ZONG Hong-Shi. Quark Number Susceptibility around the Chiral Critical End Point[J]. Chin. Phys. Lett., 2015, 32(02): 091201
[7] XIA Cheng-Jun, PENG Guang-Xiong, HOU Jia-Xun. Finite Size Effect on the in-Medium Chiral Condensate at Finite Density[J]. Chin. Phys. Lett., 2014, 31(04): 091201
[8] LI Chuan, JIANG Shao-Zhou, WANG Qing. Minimal Ward–Takahashi Vertices and Light Cone Pion Distribution Amplitudes from the GND Quark Model[J]. Chin. Phys. Lett., 2013, 30(8): 091201
[9] JIANG Yu,GONG Hao,SUN Wei-Min,ZONG Hong-Shi,**. Wigner Solution to the Quark Gap Equation in the Nonzero Current Quark Mass[J]. Chin. Phys. Lett., 2012, 29(4): 091201
[10] Krishna Kingkar Pathak**, D. K. Choudhury . The Oscillation Frequency of B and [J]. Chin. Phys. Lett., 2011, 28(10): 091201
[11] ZHAO Qiao-Yan, ZHANG Dan**, ZHANG Qiu-Yang . A Primary Study of Heavy Baryons ΛQ, ΣQ, ΞQ and ΩQ[J]. Chin. Phys. Lett., 2011, 28(7): 091201
[12] LI Quan, PANG Hou-Rong, PING Jia-Lun. Non-Strange Baryon Spectra and Confinement in the Constituent Quark Model[J]. Chin. Phys. Lett., 2010, 27(1): 091201
[13] ZHANG Dan, ZHAO Qiao-Yan, ZHANG Qiu-Yang. S-Wave DK Interactions in the Chiral SU(3) Quark Model[J]. Chin. Phys. Lett., 2009, 26(9): 091201
[14] BI Zheng, PANG Hou-Rong, PING Jia-Lun. Effect of Hidden Colour Channel on H Particle in Chiral Quark Model[J]. Chin. Phys. Lett., 2009, 26(1): 091201
[15] HE Deng-Ke, JIANG Yu, FENG Hong-Tao, SUN Wei-Min, ZONG Hong-Shi,. Quark-Number Susceptibility at Finite Chemical Potential and Zero Temperature[J]. Chin. Phys. Lett., 2008, 25(2): 091201
Viewed
Full text


Abstract