Chin. Phys. Lett.  2024, Vol. 41 Issue (9): 093301    DOI: 10.1088/0256-307X/41/9/093301
ATOMIC AND MOLECULAR PHYSICS |
Deciphering TADF Mechanisms in Metal-Free Organic Emitters BrA-HBI: Utilizing Optimally Tuned Range-Separated Functionals for Insight
Chunyue Yu, Hang Yin*, Jie Guo, Wentian Zhang, and Ying Shi*
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Cite this article:   
Chunyue Yu, Hang Yin, Jie Guo et al  2024 Chin. Phys. Lett. 41 093301
Download: PDF(3333KB)   PDF(mobile)(3797KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Metal-free organic emitters, characterized by their thermally activated delayed fluorescence (TADF) properties, offer considerable promise for the creation of highly efficient organic light-emitting diodes (OLEDs). Recently, Shao et al. presented a novel excited state intramolecular proton transfer (ESIPT) system BrA-HBI, demonstrating an emission quantum yield of up to 50% [Adv. Funct. Mater. 32, 2201256 (2022)]. However, many open issues cannot be answered solely by experimental means only and require detailed theoretical investigations. For instance, what causes the activation of TADF from the Keto$^{*}$ tautomer and leads to fluorescence quenching in the Enol$^{*}$ form? Herein, we provide a theoretical investigation on the TADF mechanism of the BrA-HBI molecule by optimally tuned range-separated functionals. Our findings reveal that ESIPT occurs in the BrA-HBI molecule. Moreover, we have disclosed the reason for the fluorescence quenching of the Enol$^{*}$ form and determined that the $T_{2}$ state plays a dominant role in the TADF phenomenon. In addition, double hybrid density functionals method was utilized to verify the reliability of optimally tuned range separation functionals on the calculation of the TADF mechanism in BrA-HBI. These findings not only provide a theoretical reference for development of highly efficient organic light-emitting diodes, but also demonstrate the effectiveness of the optimally tuned range-separated functionals in predicting the luminescence properties of TADF molecules.
Received: 04 July 2024      Published: 24 September 2024
PACS:  33.50.-j (Fluorescence and phosphorescence; radiationless transitions, quenching (intersystem crossing, internal conversion))  
  31.15.vj (Electron correlation calculations for atoms and ions: excited states)  
  32.50.+d (Fluorescence, phosphorescence (including quenching))  
  33.50.Dq (Fluorescence and phosphorescence spectra)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/9/093301       OR      https://cpl.iphy.ac.cn/Y2024/V41/I9/093301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chunyue Yu
Hang Yin
Jie Guo
Wentian Zhang
and Ying Shi
[1] Shao W H, Hao J, Jiang H J, Zimmerman P M, and Kim J 2022 Adv. Funct. Mater. 32 2201256
[2] Bryden M A and Zysman-Colman E 2021 Chem. Soc. Rev. 50 7587
[3] An Z F, Zheng C, Tao Y, Chen R F, Shi H F, Chen T, Wang Z X et al. 2015 Nat. Mater. 14 685
[4] Fang F, Zhu L, Li M, Song Y Y, Sun M, Zhao D X, and Zhang J F 2021 Adv. Sci. 8 2102970
[5] Chen X K, Zhang S F, Fan J X, and Ren A M 2015 J. Phys. Chem. C 119 9728
[6] Long Y, Mamada M, Li C Y, dos Santos P L, Colella M, Danos A, Adachi C et al. 2020 J. Phys. Chem. Lett. 11 3305
[7] Wu K L, Zhang T, Wang Z A, Wang L, Zhan L S, Gong S L, Zhong C et al. 2018 J. Am. Chem. Soc. 140 8877
[8] Jiang G Y, Li F Y, Fan J Z, Song Y Z, Wang C K, and Lin L L 2020 J. Mater. Chem. C 8 98
[9] Zhang W T, Yin H, Guo J, Zhao X, and Shi Y 2024 Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 304 123319
[10] Jiang K 2023 Chin. Phys. Lett. 40 017102
[11] Wu Y B, Wang R X, Lin R, Xu X, Zhang X, Osamah A, Qiu Y et al. 2023 Chem. Eng. J. 465 142929
[12] Wang Y C, Jiang Y H, Wang G Q, Liu D J, Li B, and Hua J L 2015 Chin. Phys. Lett. 32 048201
[13] Mamada M, Inada K, Komino T, Potscavage W J, Nakanotani H, and Adachi C 2017 ACS Cent. Sci. 3 769
[14] Kwon J E and Park S Y 2011 Adv. Mater. 23 3615
[15] Sedgwick A C, Wu L L, Han H H et al. 2018 Chem. Soc. Rev. 47 8842
[16] Guo M L, Li Q, Yan L, Wan Y F, Zhu L X, Li B, Yin H et al. 2023 Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 300 122937
[17] Kim H S, Lee J Y, Shin S, Jeong W, Lee S H, Kim S, Lee J et al. 2021 Adv. Funct. Mater. 31 2104646
[18] Li X P, Baryshnikov G, Ding L J, Bao X Y, Li X, Lu J J, Liu M Q et al. 2020 Angew. Chem. Int. Ed. 59 7548
[19] Jia H R, Wang Z B, Yuan T, Yuan F L, Li X H, Li Y C, Tan Z A et al. 2019 Adv. Sci. 6 1900397
[20] Ahn D H, Kim S W, Lee H, Ko I J, Karthik D, Lee J Y, and Kwon J H 2019 Nat. Photonics 13 540
[21] Sun H T, Zhong C, and Brédas J L 2015 J. Chem. Theory Comput. 11 3851
[22] Dias F B, Penfold T J, and Monkman A P 2017 Methods Appl. Fluoresc. 5 012001
[23] Autschbach J 2009 ChemPhysChem 10 1757
[24] He X and Wang F 2006 Chin. Phys. Lett. 23 1738
[25] Zhang H H, Yu W D, Gao C Z, and Qu Y Z 2023 Chin. Phys. Lett. 40 043101
[26] Guo S D 2014 Chin. Phys. Lett. 31 017101
[27] Varsano D, Di Felice R, Marques M A L, and Rubio A 2006 J. Phys. Chem. B 110 7129
[28] Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, and Hirao K 2004 J. Chem. Phys. 120 8425
[29] Yanai T, Tew D P, and Handy N C 2004 Chem. Phys. Lett. 393 51
[30] Körzdörfer T and Brédas J L 2014 Acc. Chem. Res. 47 3284
[31] Baer R, Livshits E, and Salzner U 2010 Annu. Rev. Phys. Chem. 61 85
[32] Autschbach J and Srebro M 2014 Acc. Chem. Res. 47 2592
[33] Moore B and Autschbach J 2012 ChemistryOpen 1 184
[34] Adamo C and Barone V 1999 J. Chem. Phys. 110 6158
[35] Sun H T, Hu Z B, Zhong C, Chen X K, Sun Z R, and Brédas J L 2017 J. Phys. Chem. Lett. 8 2393
[36] Casanova-Páez M, Dardis M B, and Goerigk L 2019 J. Chem. Theory Comput. 15 4735
[37] Casanova-Páez M and Goerigk L 2021 J. Chem. Theory Comput. 17 5165
[38] Van Dijk J, Casanova-Páez M, and Goerigk L 2022 ACS Phys. Chem. Au 2 407
[39]Frisch M J, Trucks G W, Schlegel H B et al. 2016 Gaussian 16 Version B.01 (Wallingford: Gaussian, Inc.)
[40] Zhao X, Zhu L X, Li Q, Yin H, and Shi Y 2022 Int. J. Mol. Sci. 23 13969
[41] Gao X, Bai S M, Fazzi D, Niehaus T, Barbatti M, and Thiel W 2017 J. Chem. Theory Comput. 13 515
[42] Peng Q, Yi Y P, Shuai Z G, and Shao J S 2007 J. Am. Chem. Soc. 129 9333
[43] Niu Y L, Li W Q, Peng Q et al. 2018 Mol. Phys. 116 1078
[44] Niu Y, Peng Q, and Shuai Z 2008 Sci. China Ser. B-Chem. 51 1153
[45] Escudero D 2016 Acc. Chem. Res. 49 1816
[46] Neese F 2022 WWIREs: Comput. Mol. Sci. 12 e1606
[47] Chaudhary J, Aarzoo, Roy R, and Roy R K 2022 J. Phys. Chem. A 126 5252
[48] Sun H T and Autschbach J 2014 J. Chem. Theory Comput. 10 1035
[49] Sun H T, Zhang S A, and Sun Z R 2015 Phys. Chem. Chem. Phys. 17 4337
[50] Mathivanan M and Murugesapandian B 2022 Dyes Pigm. 203 110367
[51] Yin H, Zhang Y M, Zhao H F, Yang G J, Shi Y, Zhang S X A, and Ding D J 2018 Dyes Pigm. 159 506
[52] Lin L L, Fan J Z, Cai L, and Wang C K 2017 RSC Adv. 7 44089
[53] Yin H, Shi Y, and Wang Y 2014 Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 129 280
[54] Mane S K B, Mu Y, Yang Z, Ubba E, Shaishta N, and Chi Z 2019 J. Mater. Chem. C 7 3522
[55] Park H J, Lee H L, Lee H J, Lee K H, Lee J Y, and Hong W P 2019 Chem. Mater. 31 10023
[56] Guo J, Yin H, Zhang W T, Zhao X, Zhao H F, and Shi Y 2023 Dyes Pigm. 219 111601
[57] Biswas A and Mallik B S 2022 J. Mol. Liq. 348 118390
[58] Oparin R D and Kiselev M G 2024 J. Mol. Liq. 396 123916
[59] Sun C, Zhao H, Liu X, Yin H, and Shi Y 2018 Org. Chem. Front. 5 3435
[60] Ou Q, Peng Q, and Shuai Z G 2020 J. Phys. Chem. Lett. 11 7790
[61] Peng Q and Shuai Z G 2021 Aggregate 2 e91
[62] Yin P A, Ou Q, Peng Q, and Shuai Z G 2023 Aggregate 4 e291
[63] Liu J, Fan J Z, Zhang K, Zhang Y C, Wang C K, and Lin L L 2020 Chin. Phys. B 29 088504
[64] Vahtras O, Ågren H, Jørgensen P, Jensen H J A, Helgaker T, and Olsen J 1992 J. Chem. Phys. 97 9178
[65] Chen X K, Kim D, and Brédas J L 2018 Acc. Chem. Res. 51 2215
Related articles from Frontiers Journals
[1] Jin-You Long, Chun-Long Hu, Bing Zhang,. Two-Photon Excited State Dynamics of Dark Rydberg and Bright Valence States in Furan[J]. Chin. Phys. Lett., 2017, 34(4): 093301
[2] CHEN Bin, HAO Hong-Chen, ZHU Jiang, LU Ming** . A Phenomenological Model for Decay Process of Long-Persistent Phosphorescence[J]. Chin. Phys. Lett., 2011, 28(5): 093301
[3] DONG Shuang-Li, HUANG Tao, LIU Yuan, WANG Jun, XIAO Lian-Tuan, JIA Suo-Tang. Appropriate Gate Time for Single Molecular Photon Detection Based on Optimal Signal-to-Noise Ratio Analyses[J]. Chin. Phys. Lett., 2007, 24(5): 093301
[4] HE Xiang, WANG Fan. Analysis of Time-Dependent Density Functional Theory of Transition Wavelengths of Thioaldehydes and Thioketones[J]. Chin. Phys. Lett., 2006, 23(7): 093301
[5] WANG Shao-Min, HU Lai-Gui, ZHUO Jun, ZENG Yue-Wu. Optical Controlled Switch Behaviour of the ZnS:Cu and SrAl2O4:Eu Phosphors[J]. Chin. Phys. Lett., 2005, 22(10): 093301
[6] JI Dong-Mei, HUANG Zheng-Xi, XIA An-Dong. Detection of Fluorescence from Single Chlorophyll a Molecules Absorbed on Glass Surface[J]. Chin. Phys. Lett., 2005, 22(2): 093301
[7] XIAO Lian-Tuan, ZHAO Yan-Ting, HUANG Tao, ZHAO Jian-Ming, YIN Wang-Bao, JIA Suo-Tang. Effect of Background Noise on the Photon Statistics of Triggered Single Molecules[J]. Chin. Phys. Lett., 2004, 21(3): 093301
[8] PAN Xin-Yu, JIANG Hong-Bing, LIU Chun-Ling, GONG Qi-Huang, ZHANG Xi-Yao, ZHANG Qi-Feng, XU Bei-Xue, WU Jin-Lei. Fluorescence Microscopy of Nanoscale Silver Oxide Thin Films[J]. Chin. Phys. Lett., 2003, 20(1): 093301
[9] WANG Derong, KE Guoqing, QIAN Shixiong, PENG Wenji*, YU Zhenxin*. Photoluminescence Study of C70 Film Manufactured by Physical Jet Deposition[J]. Chin. Phys. Lett., 1995, 12(12): 093301
[10] SONG Jie, LI Feiming, QIAN Shixiong, LI Yufen, PENG Wenji, ZHOU Jianying, YU Zhenxin. Time-Resolved Fluorescence Study of C60 Solution[J]. Chin. Phys. Lett., 1994, 11(3): 093301
Viewed
Full text


Abstract