Chin. Phys. Lett.  2024, Vol. 41 Issue (9): 090501    DOI: 10.1088/0256-307X/41/9/090501
GENERAL |
Multiple Soliton Asymptotics in a Spin-1 Bose–Einstein Condensate
Zhong-Zhou Lan*
School of Computer Information Management, Inner Mongolia University of Finance and Economics, Hohhot 010070, China
Cite this article:   
Zhong-Zhou Lan 2024 Chin. Phys. Lett. 41 090501
Download: PDF(1738KB)   PDF(mobile)(1779KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Spinor Bose–Einstein condensates (BECs) are formed when atoms in the multi-component BECs possess single hyperfine spin states but retain internal spin degrees of freedom. This study concentrates on a (1+1)-dimensional three-couple Gross–Pitaevskii system to depict the macroscopic spinor BEC waves within the mean-field approximation. Regarding the distribution of the atoms corresponding to the three vertical spin projections, a known binary Darboux transformation is utilized to derive the $N$ matter-wave soliton solutions and triple-pole matter-wave soliton solutions on the zero background, where $N$ is a positive integer. For those multiple matter-wave solitons, the asymptotic analysis is performed to obtain the algebraic expressions of the soliton components in the $N$ matter-wave solitons and triple-pole matter-wave solitons. The asymptotic results indicate that the matter-wave solitons in the spinor BECs possess the property of maintaining their energy content and coherence during the propagation and interactions. Particularly, in the $N$ matter-wave solitons, each soliton component contributes to the phase shifts of the other soliton components; and in the triple-pole matter-wave solitons, stable attractive forces exist between the different matter-wave soliton components. Those multiple matter-wave solitons are graphically illustrated through three-dimensional plots, density plot and contour plot, which are consistent with the asymptotic analysis results. The present analysis may provide the explanations for the complex natural mechanisms of the matter waves in the spinor BECs, and may have potential applications in designs of atom lasers, atom interferometry and coherent atom transport.
Received: 19 July 2024      Published: 03 September 2024
PACS:  05.45.Yv (Solitons)  
  03.75.Mn (Multicomponent condensates; spinor condensates)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/9/090501       OR      https://cpl.iphy.ac.cn/Y2024/V41/I9/090501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhong-Zhou Lan
[1] Wang B 2023 Highlights Sci. Eng. Technol. 38 19
[2] Zhou Q 2022 Chin. Phys. Lett. 39 010501
[3] Liu C, Chen S C, Yao X K, and Akhmediev N 2022 Chin. Phys. Lett. 39 094201
[4]Bagnato V S, Frantzeskakis D J, Kevrekidis P G, Malomed B A, and Mihalache D 2015 Rom. Rep. Phys. 67 5
[5] Mihalache D 2024 Rom. Rep. Phys. 76 402
[6] Kevrekidis P G, Frantzeskakis D J, and Carretero-González R 2008 Emergent Nonlinear Phenomena in Bose–Einstein Condensates: Theory And Experiment (Berlin: Springer-Verlag)
[7] Yan L J, Liu Y J, and Hu X B 2024 Chin. Phys. Lett. 41 040201
[8] Kawaguchi Y and Ueda M 2012 Phys. Rep. 520 253
[9] Wazwaz A M 2023 Chin. Phys. Lett. 40 120501
[10] Liu X M, Zhang Z Y, and Liu W J 2023 Chin. Phys. Lett. 40 070501
[11] Ma W X 2022 Chin. Phys. Lett. 39 100201
[12] Lou S Y, Jia M, and Hao X Z 2023 Chin. Phys. Lett. 40 020201
[13] Kengne E, Liu W M, and Malomed B A 2021 Phys. Rep. 899 1
[14] Musolino S, Kurkjian H, Van Regemortel M, Wouters M, Kokkelmans S J J M F, and Colussi V E 2022 Phys. Rev. Lett. 128 020401
[15] Henderson G W, Robb G R M, Oppo G L, and Yao A M 2022 Phys. Rev. Lett. 129 073902
[16] Krzyzanowska K A, Ferreras J, Ryu C, Samson E C, and Boshier M G 2023 Phys. Rev. A 108 043305
[17] Xu S, Schmiedmayer J, and Sanders B C 2022 Phys. Rev. Res. 4 023071
[18] Dąbrowska-Wüster B J, Ostrovskaya E A, Alexander T J, and Kivshar Y S 2007 Phys. Rev. A 75 023617
[19] Wang Y H, Meng L Z, and Zhao L C 2024 Commun. Theor. Phys. 76 065006
[20] Stamper-Kurn D M, Andrews M R, Chikkatur A P, Inouye S, Miesner H J, Stenger J, and Ketterle W 1998 Phys. Rev. Lett. 80 2027
[21] Borgh M O, Lovegrove J, and Ruostekoski J 2017 Phys. Rev. A 95 053601
[22] Kivioja M, Zamora-Zamora R, Blinova A, Mönkölä S, Rossi T, and Möttönen M 2023 Phys. Rev. Res. 5 023104
[23] Ollikainen T, Masuda S, Möttönen M, and Nakahara M 2017 Phys. Rev. A 95 013615
[24] Ding C C, Zhou Q, Xu S L, Sun Y Z, Liu W J, Mihalache D, and Malomed B A 2023 Chaos Solitons & Fractals 169 113247
[25] Ding C C, Zhou Q, Xu S L, Triki H, Mirzazadeh M, and Liu W J 2023 Chin. Phys. Lett. 40 040501
[26] Li S, Prinari B, and Biondini G 2018 Phys. Rev. E 97 022221
[27] Li L, Li Z, Malomed B A, Mihalache D, and Liu W M 2005 Phys. Rev. A 72 033611
[28] Qin Z Y and Mu G 2012 Phys. Rev. E 86 036601
[29] Ieda J, Miyakawa T, and Wadati M 2004 Phys. Rev. Lett. 93 194102
[30] Ieda J, Miyakawa T, and Wadati M 2004 J. Phys. Soc. Jpn. 73 2996
[31] He J T, Fang P P, and Lin J 2022 Chin. Phys. Lett. 39 020301
[32] Zhang C R, Tian B, Qu Q X, Yuan Y Q, and Wei C C 2022 Commun. Nonlinear Sci. & Numer. Simul. 109 105988
[33] Luo X 2020 Chaos Solitons & Fractals 131 109479
[34] Wen X Y, Lin Z, and Wang D S 2024 Phys. Rev. E 109 044215
[35] Sun W R and Wang L 2018 Proc. R. Soc. A 474 20170276
[36] Prinari B, Demontis F, Li S, and Horikis T P 2018 Physica D 368 22
[37] Loomba S 2015 Int. J. Mod. Phys. B 29 1550125
[38] Geng X, Wang K, and Chen M 2021 Commun. Math. Phys. 382 585
[39] Sanz J, Frölian A, Chisholm C S, Cabrera C R, and Tarruell L 2022 Phys. Rev. Lett. 128 013201
[40] Fang P P and Lin J 2024 Phys. Rev. E 109 064219
[41] Wang W, Zhao L C, Charalampidis E G, and Kevrekidis P G 2021 J. Phys. B 54 055301
[42] Romero-Ros A, Katsimiga G C, Kevrekidis P G, Prinari B, Biondini G, and Schmelcher P 2021 Phys. Rev. A 103 023329
[43] Yang J and Zhang Y 2023 Phys. Rev. A 107 023316
[44] Sekh G A, Pepe F V, Facchi P, Pascazio S, and Salerno M 2015 Phys. Rev. A 92 013639
[45] Chai X, Lao D, Fujimoto K, Hamazaki R, Ueda M, and Raman C 2020 Phys. Rev. Lett. 125 030402
[46] Chen Y, Wu Z, Xiao P, Xiao W, and Liu W 2024 Opt. Lett. 49 2437
[47] Xing X, Liu Y, Han J, Liu W, and Wei Z 2023 ACS Photonics 10 2264
[48] Liu W, Xiong X, Liu M, Xing X, Chen H, Ye H, Han J, and Wei Z 2022 Appl. Phys. Lett. 120 053108
[49] Liu M L, Wu H B, Liu X M, Wang Y R, Lei M, Liu W J, Guo W, and Wei Z Y 2021 Opto-Electron. Adv. 4 200029
[50] Zhao X H 2024 Appl. Math. Lett. 149 108895
[51] Zhong Y, Triki H, and Zhou Q 2024 Chin. Phys. Lett. 41 070501
Related articles from Frontiers Journals
[1] T. L. Belyaeva and V. N. Serkin. Nonlinear-Optical Analogies in Nuclear-Like Soliton Reactions: Selection Rules, Nonlinear Tunneling and Sub-Barrier Fusion–Fission[J]. Chin. Phys. Lett., 2024, 41(8): 090501
[2] Zhen-Tao Ju, Zhi-Zeng Si, Xin Yan, and Chao-Qing Dai. Solitons and Their Biperiodic Pulsation in Ultrafast Fiber Lasers Based on CB/GO[J]. Chin. Phys. Lett., 2024, 41(8): 090501
[3] Houhui Yi, Xiaofeng Li, Junling Zhang, Xin Zhang, and Guoli Ma. Higher-Order Nonlinear Effects on Optical Soliton Propagation and Their Interactions[J]. Chin. Phys. Lett., 2024, 41(7): 090501
[4] Yu Zhong, Houria Triki, and Qin Zhou. Dynamics of Ring Dark Solitons and the Following Vortices in Spin-1 Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2024, 41(7): 090501
[5] Yong Meng, Ping-Ping Fang, and Ji Lin. Nondegenerate Soliton Solutions of (2+1)-Dimensional Multi-Component Maccari System[J]. Chin. Phys. Lett., 2024, 41(6): 090501
[6] Ling-Juan Yan, Ya-Jie Liu, and Xing-Biao Hu. Some Modified Equations of the Sine-Hilbert Type[J]. Chin. Phys. Lett., 2024, 41(4): 090501
[7] Houhui Yi, Xin Zhang, Lingxian Shi, Yanli Yao, Shubin Wang, and Guoli Ma. Three-Soliton Interactions and the Implementation of Their All-Optical Switching Function[J]. Chin. Phys. Lett., 2024, 41(4): 090501
[8] Zhi-Zeng Si, Chao-Qing Dai, and Wei Liu. Tunable Three-Wavelength Fiber Laser and Transient Switching between Three-Wavelength Soliton and Q-Switched Mode-Locked States[J]. Chin. Phys. Lett., 2024, 41(2): 090501
[9] Abdul-Majid Wazwaz. New Painlevé Integrable (3+1)-Dimensional Combined pKP–BKP Equation: Lump and Multiple Soliton Solutions[J]. Chin. Phys. Lett., 2023, 40(12): 090501
[10] Xin Zhang, Houhui Yi, Yanli Yao, Shubin Wang, and Lingxian Shi. All-Optical Switches for Optical Soliton Interactions in a Birefringent Fiber[J]. Chin. Phys. Lett., 2023, 40(12): 090501
[11] Yanli Yao, Houhui Yi, Xin Zhang, and Guoli Ma. Effective Control of Three Soliton Interactions for the High-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2023, 40(10): 090501
[12] Vladimir I. Kruglov and Houria Triki. Interacting Solitons, Periodic Waves and Breather for Modified Korteweg–de Vries Equation[J]. Chin. Phys. Lett., 2023, 40(9): 090501
[13] Si-Yu Zhu, De-Xing Kong, and Sen-Yue Lou. Dark Korteweg–De Vrise System and Its Higher-Dimensional Deformations[J]. Chin. Phys. Lett., 2023, 40(8): 090501
[14] Xinyi Zhang and Ye Wu. Soliton Interactions with Different Dispersion Curve Functions in Heterogeneous Systems[J]. Chin. Phys. Lett., 2023, 40(8): 090501
[15] Xi-Meng Liu, Zhi-Yang Zhang, and Wen-Jun Liu. Physics-Informed Neural Network Method for Predicting Soliton Dynamics Supported by Complex Parity-Time Symmetric Potentials[J]. Chin. Phys. Lett., 2023, 40(7): 090501
Viewed
Full text


Abstract